-
公开(公告)号:CN113222167A
公开(公告)日:2021-08-06
申请号:CN202010081349.8
申请日:2020-02-06
Applicant: 浙江大学
Abstract: 本申请公开了一种图像处理方法及其装置,所述方法包括:获取待处理的第一图像;将第一图像输入到已训练完成的图像处理机器学习模型中,获取第一图像在预设属性下的属性特征向量,其中,所述图像处理机器学习模型利用预先获取的训练图像集以及每个训练图像对于所述预设属性的标注信息进行训练得到。采用本申请,可获取到图像在特定属性下的特征信息,从而能够更好地反映图像的局部细节。
-
公开(公告)号:CN114676458A
公开(公告)日:2022-06-28
申请号:CN202210302577.2
申请日:2022-03-24
Applicant: 浙江大学
IPC: G06F21/62 , G06F40/284 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明涉及隐私安全领域,旨在提供一种面向预训练语言模型隐私泄露风险的评估方法及系统。包括:在预训练数据集中加入伪造数据;将预训练数据集输入初始化的神经网络模型,根据设定的预训练任务和损失函数计算损失;在训练过程中持续更新模型的参数,增加其隐私的泄露风险;利用微调数据集输入经过预训练的神经网络模型,对模型的特征提取能力进行微调;向模型输入隐私前缀内容,输出作为预测结果的文本信息;计算、统计和排序输出信息的困惑度,通过对比生成的隐私信息的比例来评估隐私数据泄露的风险。本发明可以有效提高评估隐私数据泄露风险的准确性,暴露预训练语言模型存在的隐私数据泄露风险,为后续发展相关防御方法提供思路。
-