-
公开(公告)号:CN102722578A
公开(公告)日:2012-10-10
申请号:CN201210182514.4
申请日:2012-05-31
Applicant: 浙江大学
IPC: G06F17/30
Abstract: 本发明公开了一种基于拉普拉斯正则化无监督的聚类特征选取方法,包括:(1)构建样本特征矩阵;(2)计算拉普拉斯矩阵;(3)对样本特征矩阵进行特征提取。本发明通过直接度量后续学习预测结果的方差来选择特征,能直接提高后续学习预测效果;同时在特征提取过程中考虑选取的特征点对于学习问题的预测值的影响,故能有效提高后续的学习效率;另外本发明数据的建模是基于数据的流形几何的拉普拉斯方法,该方法能有效的反映数据在空间中的分布信息,从而能够找出信息量最大的维度。
-
公开(公告)号:CN102722578B
公开(公告)日:2014-07-02
申请号:CN201210182514.4
申请日:2012-05-31
Applicant: 浙江大学
IPC: G06F17/30
Abstract: 本发明公开了一种基于拉普拉斯正则化无监督的聚类特征选取方法,包括:(1)构建样本特征矩阵;(2)计算拉普拉斯矩阵;(3)对样本特征矩阵进行特征提取。本发明通过直接度量后续学习预测结果的方差来选择特征,能直接提高后续学习预测效果;同时在特征提取过程中考虑选取的特征点对于学习问题的预测值的影响,故能有效提高后续的学习效率;另外本发明数据的建模是基于数据的流形几何的拉普拉斯方法,该方法能有效的反映数据在空间中的分布信息,从而能够找出信息量最大的维度。
-