-
公开(公告)号:CN113554078B
公开(公告)日:2023-10-17
申请号:CN202110788454.X
申请日:2021-07-13
Applicant: 浙江大学
IPC: G06V10/764 , G06V10/44 , G06V10/82 , G06V10/774 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种基于对比类别集中提升连续学习下图分类精度的方法。该方法用于对已经过历史数据训练的图分类模型进行类增长学习,具体步骤如下:S1:获取加入新类别的图像分类数据集,图像分类数据集中每个样本均带有其类别标签;S2:获取所述图分类模型在上一轮训练过程中进行参数更新前的旧模型和参数更新后的新模型,然后利用加入新类别的图像分类数据集构建训练数据,进行本轮训练;S3:保存本轮参数更新前的旧模型和参数更新后的新模型,并在进行下一轮训练之前利用本轮参数更新后的新模型进行图分类任务。本发明结合对比学习和知识蒸馏的思想,能够帮助模型学习到更加聚合的数据表征,从而缓解表征覆盖,帮助模型减少灾难性遗忘。
-
公开(公告)号:CN113554078A
公开(公告)日:2021-10-26
申请号:CN202110788454.X
申请日:2021-07-13
Applicant: 浙江大学
Abstract: 本发明公开了一种基于对比类别集中提升连续学习下图分类精度的方法。该方法用于对已经过历史数据训练的图分类模型进行类增长学习,具体步骤如下:S1:获取加入新类别的图像分类数据集,图像分类数据集中每个样本均带有其类别标签;S2:获取所述图分类模型在上一轮训练过程中进行参数更新前的旧模型和参数更新后的新模型,然后利用加入新类别的图像分类数据集构建训练数据,进行本轮训练;S3:保存本轮参数更新前的旧模型和参数更新后的新模型,并在进行下一轮训练之前利用本轮参数更新后的新模型进行图分类任务。本发明结合对比学习和知识蒸馏的思想,能够帮助模型学习到更加聚合的数据表征,从而缓解表征覆盖,帮助模型减少灾难性遗忘。
-