-
公开(公告)号:CN115131599B
公开(公告)日:2023-04-18
申请号:CN202210437273.7
申请日:2022-04-19
Applicant: 浙江大学
IPC: G06V10/764 , G06V10/774 , G06N5/02 , G06N20/00
Abstract: 本发明公开了一种基于对抗偏差与鲁棒性知识蒸馏的图像分类方法,该方法用来解决图像分类领域内知识蒸馏方法出现学生模型对抗鲁棒性学习不足的问题。该方法使学生模型的自然样本输出与对抗样本输出均向教师模型学习,还规定模型自然样本输出与针对其本身的对抗样本输出之间的距离度量为对抗偏差,将教师模型的对抗偏差作为额外蒸馏项传递给学生模型,提高学生模型的泛化性。本发明实现了将教师模型的分类准确性与对抗鲁棒性传递给了学生模型,使学生模型在进行图像分类任务时可以保证较高识别准确率,并更加有效地抵御图像对抗攻击。相比于其他方法,本方法在多个常见的图像分类数据集上取得良好效果。
-
公开(公告)号:CN115131599A
公开(公告)日:2022-09-30
申请号:CN202210437273.7
申请日:2022-04-19
Applicant: 浙江大学
IPC: G06V10/764 , G06V10/774 , G06K9/62 , G06N5/02 , G06N20/00
Abstract: 本发明公开了一种基于对抗偏差与鲁棒性知识蒸馏的图像分类方法,该方法用来解决图像分类领域内知识蒸馏方法出现学生模型对抗鲁棒性学习不足的问题。该方法使学生模型的自然样本输出与对抗样本输出均向教师模型学习,还规定模型自然样本输出与针对其本身的对抗样本输出之间的距离度量为对抗偏差,将教师模型的对抗偏差作为额外蒸馏项传递给学生模型,提高学生模型的泛化性。本发明实现了将教师模型的分类准确性与对抗鲁棒性传递给了学生模型,使学生模型在进行图像分类任务时可以保证较高识别准确率,并更加有效地抵御图像对抗攻击。相比于其他方法,本方法在多个常见的图像分类数据集上取得良好效果。
-