基于多维数据模型的传感器数据流异常检测方法

    公开(公告)号:CN104994535B

    公开(公告)日:2019-08-06

    申请号:CN201510305314.7

    申请日:2015-06-04

    Abstract: 本发明公开了一种基于多维数据模型的传感器数据流异常检测方法,包括以下步骤:首先构造多维数据模型,然后采用异常数据的检测方法判断传感器节点是否为异常节点,如果是则采用异常数据的验证方法对判定的异常节点进行确认该异常节点的异常来源,所述异常来源包括异常节点所在区域发生特定事件和节点本身存在故障;本发明的方法针对传感器节点采集的多维属性数据提出了异常数据检测方法,充分考虑了传感器数据流之间的时空相关性和多维属性数据之间的关联性,具有可扩展性;与传统的检测方法比较,本发明提出的方法具有较高的检测率和较低的误报率。

    基于多维数据模型的传感器数据流异常检测方法

    公开(公告)号:CN104994535A

    公开(公告)日:2015-10-21

    申请号:CN201510305314.7

    申请日:2015-06-04

    CPC classification number: H04W24/04 H04W24/06

    Abstract: 本发明公开了一种基于多维数据模型的传感器数据流异常检测方法,包括以下步骤:首先构造多维数据模型,然后采用异常数据的检测方法判断传感器节点是否为异常节点,如果是则采用异常数据的验证方法对判定的异常节点进行确认该异常节点的异常来源,所述异常来源包括异常节点所在区域发生特定事件和节点本身存在故障;本发明的方法针对传感器节点采集的多维属性数据提出了异常数据检测方法,充分考虑了传感器数据流之间的时空相关性和多维属性数据之间的关联性,具有可扩展性;与传统的检测方法比较,本发明提出的方法具有较高的检测率和较低的误报率。

Patent Agency Ranking