-
公开(公告)号:CN112364730B
公开(公告)日:2023-01-17
申请号:CN202011185874.0
申请日:2020-10-29
Applicant: 济南大学
IPC: G06V20/10 , G06V10/26 , G06V10/56 , G06V10/74 , G06V10/762 , G06V10/77 , G06V10/764
Abstract: 本发明公开了一种基于稀疏子空间聚类的高光谱地物自动分类方法及系统,方法包括以下步骤:对高光谱图像进行空间划分,将相邻且相似的数据划分到同个超像素块;根据数据划分结果构建空间指示矩阵;在高光谱图像上进行类别信息引导稀疏子空间聚类地物分类,获得图像数据间的稀疏表示矩阵和类别标签;根据数据类别标签分别计算各类别数据间光谱的相似度和空间位置距离,并组合成各类内数据相似度;对各类内数据相似度进行排序,并筛选各类别中存在的高相似性数据关系;通过筛选后保留的高相似性数据关系构建类别信息指导矩阵;构建数据相似度矩阵并应用谱聚类获得最后的分类结果。本发明提高了高光谱地物的分类精度以及地物种类探测的准确度和效率。
-
公开(公告)号:CN112417752B
公开(公告)日:2022-11-08
申请号:CN202011185873.6
申请日:2020-10-29
Applicant: 济南大学
Abstract: 本发明公开了一种基于卷积LSTM神经网络的云层轨迹预测方法及系统,方法包括以下步骤:步骤1,获取目标云层的雷达反射率因子图像;步骤2、对雷达反射率因子图像数据进行预处理操作;步骤3、构造雷达反射率因子图像数据集,所述雷达反射率因子图像数据集包括训练集和测试集;步骤4、结合卷积LSTM神经网络、编码‑解码器、原始卷积层和原始反卷积层构建时空序列云轨迹预测模型;步骤5、利用训练集的数据训练时空序列云轨迹预测模型;步骤6、利用训练后的时空序列云轨迹预测模型对实时数据进行云层轨迹预测。本发明能够提高云层轨迹预测的效率和准确度。
-
公开(公告)号:CN112417752A
公开(公告)日:2021-02-26
申请号:CN202011185873.6
申请日:2020-10-29
Applicant: 济南大学
Abstract: 本发明公开了一种基于卷积LSTM神经网络的云层轨迹预测方法及系统,方法包括以下步骤:步骤1,获取目标云层的雷达反射率因子图像;步骤2、对雷达反射率因子图像数据进行预处理操作;步骤3、构造雷达反射率因子图像数据集,所述雷达反射率因子图像数据集包括训练集和测试集;步骤4、结合卷积LSTM神经网络、编码‑解码器、原始卷积层和原始反卷积层构建时空序列云轨迹预测模型;步骤5、利用训练集的数据训练时空序列云轨迹预测模型;步骤6、利用训练后的时空序列云轨迹预测模型对实时数据进行云层轨迹预测。本发明能够提高云层轨迹预测的效率和准确度。
-
公开(公告)号:CN112364730A
公开(公告)日:2021-02-12
申请号:CN202011185874.0
申请日:2020-10-29
Applicant: 济南大学
Abstract: 本发明公开了一种基于稀疏子空间聚类的高光谱地物自动分类方法及系统,方法包括以下步骤:对高光谱图像进行空间划分,将相邻且相似的数据划分到同个超像素块;根据数据划分结果构建空间指示矩阵;在高光谱图像上进行类别信息引导稀疏子空间聚类地物分类,获得图像数据间的稀疏表示矩阵和类别标签;根据数据类别标签分别计算各类别数据间光谱的相似度和空间位置距离,并组合成各类内数据相似度;对各类内数据相似度进行排序,并筛选各类别中存在的高相似性数据关系;通过筛选后保留的高相似性数据关系构建类别信息指导矩阵;构建数据相似度矩阵并应用谱聚类获得最后的分类结果。本发明提高了高光谱地物的分类精度以及地物种类探测的准确度和效率。
-
-
-