一种基于SqueezeNet的手写体数字识别方法

    公开(公告)号:CN108921007A

    公开(公告)日:2018-11-30

    申请号:CN201810430128.X

    申请日:2018-05-08

    Abstract: 本发明公开了一种基于SqueezeNet的手写体数字识别方法,具体包括:(1)预处理识别的手写体数字样本;(2)构建SqueezeNet卷积神经网络模型;(3)训练SqueezeNet网络模型,并对手写体数字测试集样本进行测试;(4)得出识别结果。本发明中的SqueezeNet网络模型相比于传统的AlexNet有效地减少了网络参数的总量,并且提高了手写体数字识别的精度,具备了模型压缩的基础,后续可更好地应用于移动端设备、分布式训练以及嵌入式硬件上。

    基于海量数据并行运算的SF6设备二级故障诊断方法

    公开(公告)号:CN107977672A

    公开(公告)日:2018-05-01

    申请号:CN201711103938.6

    申请日:2017-11-10

    Abstract: 本发明公开了一种基于海量数据并行运算的SF6设备二级故障诊断方法,根据电气设备中SF6分解气体成分含量与故障类型之间的对应关系,首先并行构建了SF6电气设备的二级故障诊断模型,提高了建模效率。然后实现对SF6电气设备的并行诊断,提高了其在大数据环境下诊断的快速性和准确性。该方法的并行诊断过程为每个lab对不同的数据片同时进行诊断,具体为:利用决策树模型对数据片进行初步诊断,判断设备有无故障,以提高对海量数据的处理速度。对有故障数据,再通过神经网络模型,进行故障类别的精确判定。利用本方法只需简单的数据处理即可得到诊断结果,大大降低了对操作人员专业技能的要求,在对大量SF6电气设备进行诊断时,显著提高了诊断效率。

Patent Agency Ranking