-
公开(公告)号:CN110765890A
公开(公告)日:2020-02-07
申请号:CN201910939924.0
申请日:2019-09-30
Applicant: 河海大学常州校区
Abstract: 本发明公开了一种基于胶囊网络深度学习架构的车道及车道标识检测方法,包括以下步骤:S1,在相机捕获画面上,设置两层ROI;S2,使用混合高斯滤波器执行滤波处理;S3,在ROI图像上基于波形描述和阈值分割提取车道线、路面标记组件;S4,在相机捕获图像上分离色彩通道,并在每个通道上使用中值滤波器执行噪声消除;S5,估计红色和蓝色通道的阈值,并对两个通道执行增强操作;S6,构建多通道胶囊网络,进行训练;S7,将训练好的胶囊网络用于输入经分割后的目标组件,并反馈给用户或系统。本发明解决了在复杂的环境条件变化下,对车道及车道标识的智能检测,可以较好地辅助驾驶员或无人汽车完成驾驶任务。
-
公开(公告)号:CN110765890B
公开(公告)日:2022-09-02
申请号:CN201910939924.0
申请日:2019-09-30
Applicant: 河海大学常州校区
Abstract: 本发明公开了一种基于胶囊网络深度学习架构的车道及车道标识检测方法,包括以下步骤:S1,在相机捕获画面上,设置两层ROI;S2,使用混合高斯滤波器执行滤波处理;S3,在ROI图像上基于波形描述和阈值分割提取车道线、路面标记组件;S4,在相机捕获图像上分离色彩通道,并在每个通道上使用中值滤波器执行噪声消除;S5,估计红色和蓝色通道的阈值,并对两个通道执行增强操作;S6,构建多通道胶囊网络,进行训练;S7,将训练好的胶囊网络用于输入经分割后的目标组件,并反馈给用户或系统。本发明解决了在复杂的环境条件变化下,对车道及车道标识的智能检测,可以较好地辅助驾驶员或无人汽车完成驾驶任务。
-
公开(公告)号:CN110084804A
公开(公告)日:2019-08-02
申请号:CN201910361732.6
申请日:2019-04-30
Applicant: 河海大学常州校区
Abstract: 本发明公开了一种基于弱监督深度学习的水下构筑物缺陷检测方法,包括以下步骤:S1,以语义信息为标签对输入图像进行弱标注,训练弱监督下的卷积神经网络模型,对正常图像和有缺陷图像进行分类;S2,利用卷积神经网络模型的第三层卷积层信息,实现深度显著性检测算法;S3,根据深度显著性算法的检测结果,进行迭代聚类统一检测算法,训练一个可靠的水下构筑物图像异常点分类器;S4,将迭代聚类统一检测分类器用于水下构筑物图像数据集进行评估测试。本发明提供的一种基于弱监督深度学习的水下构筑物缺陷检测方法,解决了水下构筑物缺陷检测模型难以构建的问题,可以较好地辅助检测人员完成对水下构筑物目标的缺陷检测任务。
-
-