基于WOA-LSTM-MC的水文时间序列预测优化方法

    公开(公告)号:CN112733997B

    公开(公告)日:2022-08-05

    申请号:CN202110049328.2

    申请日:2021-01-14

    Applicant: 河海大学

    Abstract: 本发明公开一种基于WOA‑LSTM‑MC的水文时间序列预测优化方法,包括使用优化后的鲸鱼优化算法对预测模型的部分参数进行参数寻优;选取待预测水文站的流量数据作为实验数据;将数据集划分为训练集和测试集,进行训练和预测;利用马尔可夫链MC进行矫正,从而得到最终的水文预测结果,即更为准确的预测值;建立混合WOA‑LSTM‑MC模型。本发明可以更快、更准确地找到预测模型所需要的最优参数,既能保证算法全局搜索能力及局部探索能力,收敛速度很快;预测结果精准。

    基于WOA-LSTM-MC的水文时间序列预测优化方法

    公开(公告)号:CN112733997A

    公开(公告)日:2021-04-30

    申请号:CN202110049328.2

    申请日:2021-01-14

    Applicant: 河海大学

    Abstract: 本发明公开一种基于WOA‑LSTM‑MC的水文时间序列预测优化方法,包括使用优化后的鲸鱼优化算法对预测模型的部分参数进行参数寻优;选取待预测水文站的流量数据作为实验数据;将数据集划分为训练集和测试集,进行训练和预测;利用马尔可夫链MC进行矫正,从而得到最终的水文预测结果,即更为准确的预测值;建立混合WOA‑LSTM‑MC模型。本发明可以更快、更准确地找到预测模型所需要的最优参数,既能保证算法全局搜索能力及局部探索能力,收敛速度很快;预测结果精准。

Patent Agency Ranking