-
公开(公告)号:CN114359544A
公开(公告)日:2022-04-15
申请号:CN202111610452.8
申请日:2021-12-27
Applicant: 江苏大学
IPC: G06V10/25 , G06V10/774 , G06V10/82 , G06K9/62 , G06N3/04
Abstract: 本发明公开了基于T‑SAE农作物植株铅浓度Vis‑NIR光谱深度迁移学习方法,获取植株根和叶片样本的高光谱图像并进一步得到植株根和叶片ROI光谱,对植株根和叶片ROI光谱进行预处理获得集合S1和S2;分别从植株根和叶片的ROI中随机抽取n个平均光谱数据并进行预处理获得集合S3和S4;基于上述光谱数据集合以及铅胁迫类别标签集合L,分别完成根、叶片光谱数据与铅胁迫类别的深度学习模型SAE Model 1和SAE Model 2的构建;进而得到根、叶片光谱数据和铅胁迫类别之间的T‑SAE深度迁移学习模型,本方法具有检测速度快,精度高,可迁移能力强,对农作物植株不会造成破坏等优点,可实现农作物植株环境重金属铅浓度类别检测。
-
公开(公告)号:CN114359544B
公开(公告)日:2024-04-12
申请号:CN202111610452.8
申请日:2021-12-27
Applicant: 江苏大学
IPC: G06V10/25 , G06V10/774 , G06V10/82 , G06N3/0464
Abstract: 本发明公开了基于T‑SAE农作物植株铅浓度Vis‑NIR光谱深度迁移学习方法,获取植株根和叶片样本的高光谱图像并进一步得到植株根和叶片ROI光谱,对植株根和叶片ROI光谱进行预处理获得集合S1和S2;分别从植株根和叶片的ROI中随机抽取n个平均光谱数据并进行预处理获得集合S3和S4;基于上述光谱数据集合以及铅胁迫类别标签集合L,分别完成根、叶片光谱数据与铅胁迫类别的深度学习模型SAE Model 1和SAE Model 2的构建;进而得到根、叶片光谱数据和铅胁迫类别之间的T‑SAE深度迁移学习模型,本方法具有检测速度快,精度高,可迁移能力强,对农作物植株不会造成破坏等优点,可实现农作物植株环境重金属铅浓度类别检测。
-