-
公开(公告)号:CN116130759B
公开(公告)日:2023-06-23
申请号:CN202310408396.2
申请日:2023-04-17
Applicant: 江苏华富储能新技术股份有限公司
IPC: H01M10/0565 , H01M10/42 , H01M10/052
Abstract: 本发明属于锂金属电池中电解质材料技术领域,公开一种三明治结构复合固态聚合物电解质的制备方法,在这种复合电解质中引入由高强度二维材料通过静电纺丝制备的超薄刚性骨架,在复合电解质中构建连续的填料‑聚合物界面,从而形成了连续贯通的高速锂离子传输路径。并进一步在复合电解两侧表面构建含不同增塑剂的涂层,增强复合固态聚合物电解质与正负极的兼容性,同时有效拓宽其电化学窗口;本发明备得到集离子电导率高、机械强度高、热稳定性好、化学性能稳定、与正负极兼容性好等综合性能于一身的全固态聚合物电解质,全面提高锂金属电池整体的电化学性能、能量密度、循环稳定性以及安全性。
-
公开(公告)号:CN117613360B
公开(公告)日:2024-03-29
申请号:CN202410089508.7
申请日:2024-01-23
Applicant: 江苏华富储能新技术股份有限公司 , 上海交通大学
IPC: H01M10/056 , H01M10/052
Abstract: 本发明公开了锂离子固态电解质技术领域内的一种具有超高NASICON型陶瓷含量的复合固态电解质薄膜及其制备方法,所述的固态电解质薄膜包括NASICON型锂离子陶瓷电解质,高粘性多链聚合物粘结剂,锂盐和硅烷偶联剂;所述NASICON型锂离子陶瓷电解质的含量为所述的固态电解质膜总质量的70‑90%;所述锂盐与所述NASICON型锂离子陶瓷电解质的质量比为1:8~1:10;相比现有固态电解质综合性能不足的瓶颈,本发明制备的复合电解质膜,厚度和成分可控,热稳定性和环境稳定性好,机械强度优异,电解质离子电导率高,离子迁移数高。
-
公开(公告)号:CN116759543B
公开(公告)日:2024-03-19
申请号:CN202310718946.0
申请日:2023-06-16
Applicant: 江苏华富储能新技术股份有限公司
Abstract: 本发明公开了一种铅酸蓄电池负极铅膏包括以下原料:铅粉、腐殖酸、木素、二氧化硅、硫酸钡、硫酸亚锡、碳素材料、短纤维、硫酸和去离子水。本发明还提供一种铅酸蓄电池负极铅膏的制备方法,包括以下步骤:步骤一,将腐殖酸、木素和去离子水混合,加入二氧化硅的颗粒混合后进行干燥得到添加剂A;步骤二,将添加剂A与硫酸钡、硫酸亚锡、碳素材料、短纤维中的一种或多种进行干混得到添加剂B;步骤三,将硫酸钡、硫酸亚锡、碳素材料、短纤维中未使用的一种或多种以及添加剂B、100份铅粉进行干混,然后与去离子进行混合,之后与硫酸进行混合,得到负极铅膏。本发明通过对原料进行分步制备,最后再进行合膏,提升了蓄电池的循环容量和低温性能。
-
公开(公告)号:CN117638006A
公开(公告)日:2024-03-01
申请号:CN202410089525.0
申请日:2024-01-23
Applicant: 江苏华富储能新技术股份有限公司 , 上海交通大学
IPC: H01M4/1395 , C23C24/06 , H01M4/04 , H01M4/134 , H01M4/62 , H01M10/052
Abstract: 本发明公开了锂电池技术领域内的一种锂金属氟化高熵SEI层、其制备方法及其应用,将多种金属氧化物或多种金属粉末与氟硅酸混合得到氟硅酸盐前驱液,前驱液在400‑600℃条件下进行热分解制备得到高熵氟化物粉末,将其辊压到锂金属表面,在锂金属表面生成一层均匀致密、结构稳定,且具有高机械强度的含LiF和合金的氟化高熵SEI层,该保护层兼具电子绝缘性和离子导电性,能够促进锂均匀致密沉积,抑制枝晶以及电极体积膨胀,该高熵SEI层制备工艺简单,成本低廉,可实现规模化制备。
-
公开(公告)号:CN116130759A
公开(公告)日:2023-05-16
申请号:CN202310408396.2
申请日:2023-04-17
Applicant: 江苏华富储能新技术股份有限公司
IPC: H01M10/0565 , H01M10/42 , H01M10/052
Abstract: 本发明属于锂金属电池中电解质材料技术领域,公开一种三明治结构复合固态聚合物电解质的制备方法,在这种复合电解质中引入由高强度二维材料通过静电纺丝制备的超薄刚性骨架,在复合电解质中构建连续的填料‑聚合物界面,从而形成了连续贯通的高速锂离子传输路径。并进一步在复合电解两侧表面构建含不同增塑剂的涂层,增强复合固态聚合物电解质与正负极的兼容性,同时有效拓宽其电化学窗口;本发明备得到集离子电导率高、机械强度高、热稳定性好、化学性能稳定、与正负极兼容性好等综合性能于一身的全固态聚合物电解质,全面提高锂金属电池整体的电化学性能、能量密度、循环稳定性以及安全性。
-
公开(公告)号:CN117638006B
公开(公告)日:2024-03-29
申请号:CN202410089525.0
申请日:2024-01-23
Applicant: 江苏华富储能新技术股份有限公司 , 上海交通大学
IPC: H01M4/1395 , C23C24/06 , H01M4/04 , H01M4/134 , H01M4/62 , H01M10/052
Abstract: 本发明公开了锂电池技术领域内的一种锂金属氟化高熵SEI层、其制备方法及其应用,将多种金属氧化物或多种金属粉末与氟硅酸混合得到氟硅酸盐前驱液,前驱液在400‑600℃条件下进行热分解制备得到高熵氟化物粉末,将其辊压到锂金属表面,在锂金属表面生成一层均匀致密、结构稳定,且具有高机械强度的含LiF和合金的氟化高熵SEI层,该保护层兼具电子绝缘性和离子导电性,能够促进锂均匀致密沉积,抑制枝晶以及电极体积膨胀,该高熵SEI层制备工艺简单,成本低廉,可实现规模化制备。
-
公开(公告)号:CN118712470A
公开(公告)日:2024-09-27
申请号:CN202411148680.1
申请日:2024-08-21
Applicant: 江苏华富储能新技术股份有限公司
IPC: H01M10/0562 , H01M10/052 , H01M10/42
Abstract: 本发明公开了卤化物固态电解质制备技术领域内的一种二维限域的卤化物固态电解质薄膜的制备方法,以二维材料及卤化物固态电解质前驱体为原料,将卤化物固态电解质前驱体溶液灌入二维材料层间,并通过溶剂挥发、高温烧结、退火使得卤化物固态电解质在二维材料层间限域定向生长,得到高离子电导的超薄卤化物固态电解质膜,本发明提高了卤化物固态电解质的结晶度,进而实现高离子电导的超薄卤化物固态电解质膜以及高倍率的全固态锂电池。
-
公开(公告)号:CN117613360A
公开(公告)日:2024-02-27
申请号:CN202410089508.7
申请日:2024-01-23
Applicant: 江苏华富储能新技术股份有限公司 , 上海交通大学
IPC: H01M10/056 , H01M10/052
Abstract: 本发明公开了锂离子固态电解质技术领域内的一种具有超高NASICON型陶瓷含量的复合固态电解质薄膜及其制备方法,所述的固态电解质薄膜包括NASICON型锂离子陶瓷电解质,高粘性多链聚合物粘结剂,锂盐和硅烷偶联剂;所述NASICON型锂离子陶瓷电解质的含量为所述的固态电解质膜总质量的70‑90%;所述锂盐与所述NASICON型锂离子陶瓷电解质的质量比为1:8~1:10;相比现有固态电解质综合性能不足的瓶颈,本发明制备的复合电解质膜,厚度和成分可控,热稳定性和环境稳定性好,机械强度优异,电解质离子电导率高,离子迁移数高。
-
公开(公告)号:CN116759543A
公开(公告)日:2023-09-15
申请号:CN202310718946.0
申请日:2023-06-16
Applicant: 江苏华富储能新技术股份有限公司
Abstract: 本发明公开了一种铅酸蓄电池负极铅膏包括以下原料:铅粉、腐殖酸、木素、二氧化硅、硫酸钡、硫酸亚锡、碳素材料、短纤维、硫酸和去离子水。本发明还提供一种铅酸蓄电池负极铅膏的制备方法,包括以下步骤:步骤一,将腐殖酸、木素和去离子水混合,加入二氧化硅的颗粒混合后进行干燥得到添加剂A;步骤二,将添加剂A与硫酸钡、硫酸亚锡、碳素材料、短纤维中的一种或多种进行干混得到添加剂B;步骤三,将硫酸钡、硫酸亚锡、碳素材料、短纤维中未使用的一种或多种以及添加剂B、100份铅粉进行干混,然后与去离子进行混合,之后与硫酸进行混合,得到负极铅膏。本发明通过对原料进行分步制备,最后再进行合膏,提升了蓄电池的循环容量和低温性能。
-
公开(公告)号:CN220382207U
公开(公告)日:2024-01-23
申请号:CN202322029825.3
申请日:2023-07-28
Applicant: 江苏华富储能新技术股份有限公司
IPC: H01M50/186 , H01M50/171 , H01M10/12
Abstract: 本实用新型涉及一种防漏液卧式铅酸蓄电池,包括电池槽、电池盖和极群组;所述电池槽的内部设置有所述极群组;所述电池槽的顶部设置有沿所述电池槽的顶部周向延伸的胶水槽;所述胶水槽中设置有胶水;所述电池盖的底部设置有双插结构;所述双插结构与所述胶水槽通过所述胶水形成密封。电池盖底部的双插结构通过胶水与胶水槽形成密封,防止酸液渗入到电池槽与电池盖的结合处,从而避免酸液从电池盖与电池槽的缝隙漏出,解决了在铅酸蓄电池卧式安装时,充电过程中可能会存在漏酸的现象的问题,降低了蓄电池卧式安装时的使用风险,提高了蓄电池的可靠性和安全性。
-
-
-
-
-
-
-
-
-