一种基于无监督模糊系统的脑功能磁共振图像分类方法

    公开(公告)号:CN108596228B

    公开(公告)日:2022-08-23

    申请号:CN201810330707.7

    申请日:2018-04-13

    Applicant: 江南大学

    Abstract: 本发明公开了一种基于无监督模糊系统的脑功能磁共振图像分类方法,它涉及自闭症计算机辅助诊断技术领域。其步骤为:采集静息状态下的功能磁共振成像数据并进行预处理,选择AAL模板将大脑皮层分区,提取每个脑区的平均时间序列信号,使用皮尔逊相关系数计算得到低阶功能连接矩阵;基于低阶功能连接矩阵计算皮尔逊相关系数得到高阶功能连接矩阵,将每个对象的低阶和高阶脑功能连接矩阵分别拉直,使用基于流形正则化约束的无监督模糊系统进行降维,对降维后的低阶和高阶功能连接矩阵进行线性组合,使用SVM进行分类。本发明对静息态脑功能磁共振图像进行分类,将其应用于自闭症的计算机辅助诊断中,分类准确率高、泛化性能好、可解释性强。

    一种基于无监督模糊系统的脑功能磁共振图像分类方法

    公开(公告)号:CN108596228A

    公开(公告)日:2018-09-28

    申请号:CN201810330707.7

    申请日:2018-04-13

    Applicant: 江南大学

    Abstract: 本发明公开了一种基于无监督模糊系统的脑功能磁共振图像分类方法,它涉及自闭症计算机辅助诊断技术领域。其步骤为:采集静息状态下的功能磁共振成像数据并进行预处理,选择AAL模板将大脑皮层分区,提取每个脑区的平均时间序列信号,使用皮尔逊相关系数计算得到低阶功能连接矩阵;基于低阶功能连接矩阵计算皮尔逊相关系数得到高阶功能连接矩阵,将每个对象的低阶和高阶脑功能连接矩阵分别拉直,使用基于流形正则化约束的无监督模糊系统进行降维,对降维后的低阶和高阶功能连接矩阵进行线性组合,使用SVM进行分类。本发明对静息态脑功能磁共振图像进行分类,将其应用于自闭症的计算机辅助诊断中,分类准确率高、泛化性能好、可解释性强。

Patent Agency Ranking