-
公开(公告)号:CN114742802A
公开(公告)日:2022-07-12
申请号:CN202210411370.9
申请日:2022-04-19
Applicant: 江南大学
Abstract: 本发明公开了一种基于3Dtransformer混合卷积神经网络的胰腺CT图像分割方法,包括:采集胰腺CT图像数据集并进行数据预处理;利用步进卷积进行下采样,利用3Dtransformer进行特征提取,利用反卷积上采样进行解码,以建立3Dtransformer混合卷积神经网络;将预处理后的数据输入所述3Dtransformer混合卷积神经网络,输出分割结果;本发明结合卷积神经网络局部表征能力与Transformer的全局建模能力来提取融合胰腺各级特征;提出一种适用胰腺和网络的损失函数,改善了针对胰腺类别不平衡以及纹理信息大不相同带来的学习难易程度存在差异等问题;采用多视角跳跃连接及特征融合模块弥补了医学图像U型架构上下采样的信息损失问题。
-
公开(公告)号:CN114742802B
公开(公告)日:2023-04-18
申请号:CN202210411370.9
申请日:2022-04-19
Applicant: 江南大学
Abstract: 本发明公开了一种基于3Dtransformer混合卷积神经网络的胰腺CT图像分割方法,包括:采集胰腺CT图像数据集并进行数据预处理;利用步进卷积进行下采样,利用3Dtransformer进行特征提取,利用反卷积上采样进行解码,以建立3Dtransformer混合卷积神经网络;将预处理后的数据输入所述3Dtransformer混合卷积神经网络,输出分割结果;本发明结合卷积神经网络局部表征能力与Transformer的全局建模能力来提取融合胰腺各级特征;提出一种适用胰腺和网络的损失函数,改善了针对胰腺类别不平衡以及纹理信息大不相同带来的学习难易程度存在差异等问题;采用多视角跳跃连接及特征融合模块弥补了医学图像U型架构上下采样的信息损失问题。
-