一种适应曝光变化的深度学习光谱重建方法及系统

    公开(公告)号:CN115601611A

    公开(公告)日:2023-01-13

    申请号:CN202211248607.2

    申请日:2022-10-12

    Abstract: 本发明公开了一种适应曝光变化的深度学习光谱重建方法及系统,首先收集现有公开的多光谱图像数据集,并以数码相机理论成像模型为基础,计算每幅多光谱图像对应的raw格式数字图像,得到包含成对数据的完整样本集。然后构建深度学习模型框架,在模型训练时,通过对输入的raw格式数字图像的任一列像素点随机乘以一个曝光调整系数,使模型能够适应不同曝光水平的图像,并对重建的多光谱乘以曝光调整系数的倒数,从而完成重建多光谱的幅值校正。利用训练样本集对模型进行训练,并利用验证样本集对模型进行调参,计算验证样本集的光谱重建误差,直至验证样本集光谱重建误差达到收敛状态,完成模型训练,得到适应曝光变化的深度学习光谱重建模型。

Patent Agency Ranking