基于多模态特征融合的双时相遥感影像语义变化检测方法

    公开(公告)号:CN112488025A

    公开(公告)日:2021-03-12

    申请号:CN202011451412.9

    申请日:2020-12-10

    Abstract: 本发明公开了一种基于多模态特征融合的双时相遥感影像语义变化检测方法,包括以下几个步骤:步骤A:对多时相遥感影像数据集进行数据增强的预处理;步骤B:构建基于多模态特征融合的卷积神经网络模型,利用数据集训练卷积神经网络,获得训练模型;步骤C:利用训练模型对数据集进行数据清理;步骤D:利用清理后的数据重新训练模型,并对测试数据进行测试得到预测结果;步骤E:变化检测预测结果后处理。本发明提供的基于多模态特征融合的双时相遥感影像语义变化检测方法,可以在检测出变化区域的同时检测出区域变化前后的类别,应用范围更广泛,同时满足端到端处理,不需要人工进行其他处理,便于工程应用。

    一种跨平台的时空大数据分布式处理方法及系统

    公开(公告)号:CN112732852B

    公开(公告)日:2022-09-13

    申请号:CN202011643656.7

    申请日:2020-12-31

    Abstract: 本发明涉及一种跨平台的时空大数据分布式处理方法及软件,在复用传统的地理信息系统内核的基础上,提出了一种跨平台的时空大数据管理方法,运用Apache Beam模型,对空间数据进行高效的存储,避免了用户在不同的分布式计算平台上分别编写数据管理程序,大大提升了开发效率;提出了一种改进的分布式空间数据并行处理方法,在Apache Beam提供的对非空间数据进行并行处理方法的基础上,兼容了对如插值分析、密度分析等需要同时对多个输入点要素进行处理的空间分析算法的并行化。避免了用户编写自己的空间数据处理算法,并使得需要同时对多个输入点要素进行处理的空间分析算法的并行化成为可能,能够对海量空间数据进行高效的处理和分析。

    一种跨平台的时空大数据分布式处理方法及软件

    公开(公告)号:CN112732852A

    公开(公告)日:2021-04-30

    申请号:CN202011643656.7

    申请日:2020-12-31

    Abstract: 本发明涉及一种跨平台的时空大数据分布式处理方法及软件,在复用传统的地理信息系统内核的基础上,提出了一种跨平台的时空大数据管理方法,运用Apache Beam模型,对空间数据进行高效的存储,避免了用户在不同的分布式计算平台上分别编写数据管理程序,大大提升了开发效率;提出了一种改进的分布式空间数据并行处理方法,在Apache Beam提供的对非空间数据进行并行处理方法的基础上,兼容了对如插值分析、密度分析等需要同时对多个输入点要素进行处理的空间分析算法的并行化。避免了用户编写自己的空间数据处理算法,并使得需要同时对多个输入点要素进行处理的空间分析算法的并行化成为可能,能够对海量空间数据进行高效的处理和分析。

Patent Agency Ranking