一种六氟化硫降解装置
    1.
    发明公开

    公开(公告)号:CN115999358A

    公开(公告)日:2023-04-25

    申请号:CN202310017691.5

    申请日:2023-01-06

    申请人: 武汉大学

    摘要: 本申请公开了一种六氟化硫降解装置。该六氟化硫降解装置包括反应罐,反应罐的上端固定安装有固定座,且固定座的上端固定安装有驱动电机,驱动电机的输出端固定安装有出气管,且出气管的下端延伸至反应罐的内部,反应罐的中间位置竖直固定安装有连通管,且出气管的下端固定安装有螺杆,螺杆延伸至连通管的内部,且反应罐的中间位置固定安装有催化剂,反应罐的外部固定安装有加热环,通过采用连通管和螺杆,便于将混合气体进行反复在反应罐的内部上下移动,反复经过催化剂,进而通过加热环,提高热催化降解的效果,并通过混气管,便于将辅助气体与六氟化硫气体进行充分混合,方便进行使用,提高降解的充分性。

    基于优化DMC电解铝参与电网二次调频控制方法及设备

    公开(公告)号:CN118232432A

    公开(公告)日:2024-06-21

    申请号:CN202410643377.2

    申请日:2024-05-23

    申请人: 武汉大学

    摘要: 本发明涉及电力系统运行与控制技术,具体涉及基于优化DMC电解铝参与电网二次调频控制方法及设备,该方法包括构建电解铝负荷模型,求取电解铝负荷模型向量,并设置建模时域、单位采样时长;构建电解铝负荷出力预测模型;定义性能指标目标函数与负荷出力期望值,性能指标通常包括预测输出与期望输出之间的偏差,以及可能的控制输入变化;在DMC滚动优化中加入粒子群算法对电解铝参与调频有功出力进行优化,并输出控制输入优化结果。采用动态矩阵控制DMC预测控制方法,能够处理多输入多输出系统,可以根据系统的实时状态和未来的预测进行控制,从而更好地应对系统的变化和不确定性。

    一种六氟化硫降解装置
    4.
    发明授权

    公开(公告)号:CN115999358B

    公开(公告)日:2024-05-24

    申请号:CN202310017691.5

    申请日:2023-01-06

    申请人: 武汉大学

    摘要: 本申请公开了一种六氟化硫降解装置。该六氟化硫降解装置包括反应罐,反应罐的上端固定安装有固定座,且固定座的上端固定安装有驱动电机,驱动电机的输出端固定安装有出气管,且出气管的下端延伸至反应罐的内部,反应罐的中间位置竖直固定安装有连通管,且出气管的下端固定安装有螺杆,螺杆延伸至连通管的内部,且反应罐的中间位置固定安装有催化剂,反应罐的外部固定安装有加热环,通过采用连通管和螺杆,便于将混合气体进行反复在反应罐的内部上下移动,反复经过催化剂,进而通过加热环,提高热催化降解的效果,并通过混气管,便于将辅助气体与六氟化硫气体进行充分混合,方便进行使用,提高降解的充分性。

    一种基于红外光谱法的SF6分解产物监测系统及使用方法

    公开(公告)号:CN116337798A

    公开(公告)日:2023-06-27

    申请号:CN202310304898.0

    申请日:2023-03-27

    申请人: 武汉大学

    IPC分类号: G01N21/3504 G01N21/01

    摘要: 本发明提供一种基于红外光谱法的SF6分解产物监测系统及使用方法,包括待测装置、气体采集模块、气体检测模块和气体回充模块,所述气体采集模块包括气体采集室、气体采集管路、气体采集端口和气体控制组件,所述气体采集端口设置于待测装置的气体出口端,所述气体采集管路一端连通气体出口端,另一端连通至气体采集室,所述气体检测模块包括检测器组件、红外光谱检测组件和信息处理器,所述检测器组件设置于气体采集室,所述红外光谱检测组件设置于气体采集室的出口端并将采集数据输入至信息处理器,所述气体回充模块连接气体采集室和待测装置的气体回充端口。本发明造价低,检测效率高,检测精度优良,可实现现场连续监测。

    基于优化DMC电解铝参与电网二次调频控制方法及设备

    公开(公告)号:CN118232432B

    公开(公告)日:2024-08-13

    申请号:CN202410643377.2

    申请日:2024-05-23

    申请人: 武汉大学

    摘要: 本发明涉及电力系统运行与控制技术,具体涉及基于优化DMC电解铝参与电网二次调频控制方法及设备,该方法包括构建电解铝负荷模型,求取电解铝负荷模型向量,并设置建模时域、单位采样时长;构建电解铝负荷出力预测模型;定义性能指标目标函数与负荷出力期望值,性能指标通常包括预测输出与期望输出之间的偏差,以及可能的控制输入变化;在DMC滚动优化中加入粒子群算法对电解铝参与调频有功出力进行优化,并输出控制输入优化结果。采用动态矩阵控制DMC预测控制方法,能够处理多输入多输出系统,可以根据系统的实时状态和未来的预测进行控制,从而更好地应对系统的变化和不确定性。