-
公开(公告)号:CN102663436B
公开(公告)日:2014-04-16
申请号:CN201210134551.8
申请日:2012-05-03
Applicant: 武汉大学
IPC: G06K9/62
Abstract: 本发明涉及一种用于光学纹理图像和SAR图像的自适应特征提取方法,包括对训练集中多幅图像学习采样位置,进而不断学习出采样分布;对学习的采样分布利用自适应滤波对图像块进行采样编码,提取自适应特征;将该自适应特征与原始LBP特征串联组合,即为图像的自适应纹理特征描述。本发明融合了图像的分布特性、空间特性,利用了图像的先验知识学习,通过自适应采样的随机性,从而克服了普通LBP特征采样固定性的缺陷,提高光学纹理图像和SAR图像的分类正确率,进而提高基于纹理特征的分类、分割等图像处理应用的准确率。
-
公开(公告)号:CN102682306B
公开(公告)日:2014-02-26
申请号:CN201210132419.3
申请日:2012-05-02
Applicant: 武汉大学
Abstract: 一种用于SAR图像的小波金字塔极化纹理基元特征提取方法,包括生成小波极化方差特征、小波极化纹理基元特征以及运用金字塔模型描述小波极化纹理基元特征。小波极化方差特征是结合极化合成和离散小波框架,通过计算标准化小波系数的方差得到每个像素点的特征矢量;而小波极化纹理基元特征是对部分小波极化方差特征矢量聚类,生成纹理基元库,然后以图像中感兴趣点为中心,取图像块,将每个块包含的特征矢量与纹理基元库匹配,得到统计直方图,即小波极化纹理基元特征;最后运用金字塔模型在更精细的分辨率下描述小波极化纹理基元特征。运用支持向量机即可采用本发明所得基于金字塔表达的小波极化纹理基元特征对极化SAR图像分类。
-
公开(公告)号:CN102663436A
公开(公告)日:2012-09-12
申请号:CN201210134551.8
申请日:2012-05-03
Applicant: 武汉大学
IPC: G06K9/62
Abstract: 本发明涉及一种用于光学纹理图像和SAR图像的自适应特征提取方法,包括对训练集中多幅图像学习采样位置,进而不断学习出采样分布;对学习的采样分布利用自适应滤波对图像块进行采样编码,提取自适应特征;将该自适应特征与原始LBP特征串联组合,即为图像的自适应纹理特征描述。本发明融合了图像的分布特性、空间特性,利用了图像的先验知识学习,通过自适应采样的随机性,从而克服了普通LBP特征采样固定性的缺陷,提高光学纹理图像和SAR图像的分类正确率,进而提高基于纹理特征的分类、分割等图像处理应用的准确率。
-
公开(公告)号:CN102682306A
公开(公告)日:2012-09-19
申请号:CN201210132419.3
申请日:2012-05-02
Applicant: 武汉大学
Abstract: 一种用于SAR图像的小波金字塔极化纹理基元特征提取方法,包括生成小波极化方差特征、小波极化纹理基元特征以及运用金字塔模型描述小波极化纹理基元特征。小波极化方差特征是结合极化合成和离散小波框架,通过计算标准化小波系数的方差得到每个像素点的特征矢量;而小波极化纹理基元特征是对部分小波极化方差特征矢量聚类,生成纹理基元库,然后以图像中感兴趣点为中心,取图像块,将每个块包含的特征矢量与纹理基元库匹配,得到统计直方图,即小波极化纹理基元特征;最后运用金字塔模型在更精细的分辨率下描述小波极化纹理基元特征。运用支持向量机即可采用本发明所得基于金字塔表达的小波极化纹理基元特征对极化SAR图像分类。
-
-
-