-
公开(公告)号:CN103793702B
公开(公告)日:2017-02-01
申请号:CN201410071721.1
申请日:2014-02-28
Applicant: 武汉大学
Abstract: 本发明公开了一种基于协同尺度学习的行人重识别方法,属于监控视频检索技术领域。本发明首先根据已标注训练样本集L中图像的颜色和纹理特征,进行尺度学习得到相应马氏距离中的协方差矩阵Mc和Mt;随机选择查询对象使用Mc和Mt进行马氏距离度量,得到相应排序结果,从中取得正样本和负样本生成新的已标注训练样本集L,更新Mc和Mt,直到未标注训练样本集U为空,得到最终的标注样本集L*,并融合颜色和纹理特征得到Mf,就可以使用基于Mf的马氏距离函数进行行人重识别。本发明在半监督框架下研究基于尺度学习的行人重识别技术,通过未标注样本辅助标注样本进行尺度学习,符合实际视频侦查应用标注训练样本难以获取的要求,能有效提升少标注样本下的重识别性能。
-
公开(公告)号:CN103793702A
公开(公告)日:2014-05-14
申请号:CN201410071721.1
申请日:2014-02-28
Applicant: 武汉大学
Abstract: 本发明公开了一种基于协同尺度学习的行人重识别方法,属于监控视频检索技术领域。本发明首先根据已标注训练样本集L中图像的颜色和纹理特征,进行尺度学习得到相应马氏距离中的协方差矩阵Mc和Mt;随机选择查询对象使用Mc和Mt进行马氏距离度量,得到相应排序结果,从中取得正样本和负样本生成新的已标注训练样本集L,更新Mc和Mt,直到未标注训练样本集U为空,得到最终的标注样本集L*,并融合颜色和纹理特征得到Mf,就可以使用基于Mf的马氏距离函数进行行人重识别。本发明在半监督框架下研究基于尺度学习的行人重识别技术,通过未标注样本辅助标注样本进行尺度学习,符合实际视频侦查应用标注训练样本难以获取的要求,能有效提升少标注样本下的重识别性能。
-