基于YOLO算法的电能质量扰动检测方法

    公开(公告)号:CN110728195B

    公开(公告)日:2022-04-01

    申请号:CN201910881278.7

    申请日:2019-09-18

    Applicant: 武汉大学

    Abstract: 本发明涉及电能质量扰动信号检测技术,具体涉及基于YOLO算法的电能质量扰动检测方法,包括建立电能质量扰动信号数学模型,使用MATLAB实现电能质量扰动信号的构建,遍历扰动信号参数矩阵,生成电能质量扰动样本数据集;将样本集Imagenet输入全卷积神经网络Darknet‑53,经过训练得到网络初始权重参数;设置训练参数;采用多分辨率训练策略,将标记好的电能质量扰动样本数据集输入全卷积神经网络Darknet‑53进行训练,更新网络权重参数,得到电能质量扰动信号检测模型;随机生成电能质量扰动信号,将扰动信号转为二维图像后输入检测模型,得到检测结果。该方法检测精度高,适用范围广,速度满足实时监测,能够准确辨识各类电能质量扰动信号。

    基于YOLO算法的电能质量扰动检测方法

    公开(公告)号:CN110728195A

    公开(公告)日:2020-01-24

    申请号:CN201910881278.7

    申请日:2019-09-18

    Applicant: 武汉大学

    Abstract: 本发明涉及电能质量扰动信号检测技术,具体涉及基于YOLO算法的电能质量扰动检测方法,包括建立电能质量扰动信号数学模型,使用MATLAB实现电能质量扰动信号的构建,遍历扰动信号参数矩阵,生成电能质量扰动样本数据集;将样本集Imagenet输入全卷积神经网络Darknet-53,经过训练得到网络初始权重参数;设置训练参数;采用多分辨率训练策略,将标记好的电能质量扰动样本数据集输入全卷积神经网络Darknet-53进行训练,更新网络权重参数,得到电能质量扰动信号检测模型;随机生成电能质量扰动信号,将扰动信号转为二维图像后输入检测模型,得到检测结果。该方法检测精度高,适用范围广,速度满足实时监测,能够准确辨识各类电能质量扰动信号。

Patent Agency Ranking