-
公开(公告)号:CN118469038A
公开(公告)日:2024-08-09
申请号:CN202410623419.6
申请日:2024-05-20
Applicant: 桂林电子科技大学 , 南宁桂电电子科技研究院有限公司
IPC: G06N20/00 , G06F18/2321
Abstract: 本发明涉及基于模型参数聚类的个性化联邦学习,包括:S1、中央服务器初始化模型;S2、中央服务器将模型分发给每个客户端,作为客户端模型;S3、客户端基于客户端本地数据集训练客户端模型,并将训练后的客户端模型发送至中央服务器;S4、中央服务器在获得训练后的客户端模型后,将多个训练后的客户端模型中同一维度的模型参数作为一组数据进行聚类,形成多个簇并计算出各自聚类中心;S5、中央服务器将聚类中心赋值给簇内的每条模型参数,从而组合得到多个个性化模型;S6、中央服务器将个性化模型分别发送给客户端;S7、客户端对个性化模型进行检验,若个性化模型收敛,或达到预设训练轮次,则停止训练,否则返回S3。