-
公开(公告)号:CN109447161A
公开(公告)日:2019-03-08
申请号:CN201811287954.X
申请日:2018-10-31
Applicant: 桂林电子科技大学
IPC: G06K9/62
Abstract: 本发明公开了一种基于汽车雷达数据的实时增量与自适应聚类方法,提出将EKF与DBSCAN算法结合来实现汽车雷达数据实时聚类,目的是解决工作在多目标复杂坏境下的汽车雷达数据聚类效率低的缺点,以及无法应对数据密度簇不均匀问题。本发明方法考虑到汽车雷达在对目标进行跟踪预测时常会用到EKF的特点,改进DBSCAN算法,改进的DBSCAN算法可以很大限度上保证聚类结果不受航迹重合的影响;还可以使得卡尔曼滤波参数在同一目标中可以持续迭代,节省了从初始参数迭代需要的时间,提高了聚类效率。本发明方法同时实现增量和自适应DBSCAN聚类,可以保持较低时间内存开销,并且可以用来解决汽车雷达数据簇密度不均匀的情况。
-
公开(公告)号:CN109447161B
公开(公告)日:2021-07-13
申请号:CN201811287954.X
申请日:2018-10-31
Applicant: 桂林电子科技大学
IPC: G06K9/62
Abstract: 本发明公开了一种基于汽车雷达数据的实时增量与自适应聚类方法,提出将EKF与DBSCAN算法结合来实现汽车雷达数据实时聚类,目的是解决工作在多目标复杂坏境下的汽车雷达数据聚类效率低的缺点,以及无法应对数据密度簇不均匀问题。本发明方法考虑到汽车雷达在对目标进行跟踪预测时常会用到EKF的特点,改进DBSCAN算法,改进的DBSCAN算法可以很大限度上保证聚类结果不受航迹重合的影响;还可以使得卡尔曼滤波参数在同一目标中可以持续迭代,节省了从初始参数迭代需要的时间,提高了聚类效率。本发明方法同时实现增量和自适应DBSCAN聚类,可以保持较低时间内存开销,并且可以用来解决汽车雷达数据簇密度不均匀的情况。
-