-
公开(公告)号:CN114708281B
公开(公告)日:2024-03-22
申请号:CN202210392717.X
申请日:2022-04-15
Applicant: 桂林电子科技大学
IPC: G06T9/00 , H04N19/176 , H04N19/85 , G06N3/0464 , G06N3/0985 , G06V10/74 , G06V10/80
Abstract: 本发明公开了一种基于自适应非局部特征融合网络的图像压缩感知重建方法,其特征在于,包括如下步骤:1)训练数据预处理;2)获取测数据yi;3)构造图像块压缩观测值yi协同重构组Yi;4)采用线性映射网络F获得初始重建图像块协同重构组Zi;5)将协同重构组Zi进行特征交互得到协同联合重建特征Zc;6)采用全局残差网络Fr对图像块zi进行增强重建获得重建图像z′i;7)采用图像块稀疏约束损失函数对网络训练进行约束。这种方法采用非局部特征为图像块重建提供互补信息,能有效恢复图像中的高频信息。
-
公开(公告)号:CN114821100A
公开(公告)日:2022-07-29
申请号:CN202210385383.3
申请日:2022-04-13
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种基于结构组稀疏网络的图像压缩感知重建方法,所述方法为:为图像块构造相似组,将图像块与其相似组输入卷积神经网络;将图像块相似组输入边缘轮廓重构分支,通过其中的局部残差递归网络和亚相素层,获得对图像边缘轮廓的重建;将图像块相似组输入局部细节重构分支,通过其中的密集连接网络和多尺度编解码网络模块,获得对图像细节纹理的重建;将两分支重建图像进行融合,输出得到对原始图像的重建图;训练中,设计并采用结构组稀疏约束损失函数进行训练约束。这种方法能节约计算资源、能提高图像的重建精度。
-
公开(公告)号:CN114821100B
公开(公告)日:2024-03-26
申请号:CN202210385383.3
申请日:2022-04-13
Applicant: 桂林电子科技大学
IPC: G06V10/44 , G06V10/74 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/084
Abstract: 本发明公开了一种基于结构组稀疏网络的图像压缩感知重建方法,所述方法为:为图像块构造相似组,将图像块与其相似组输入卷积神经网络;将图像块相似组输入边缘轮廓重构分支,通过其中的局部残差递归网络和亚相素层,获得对图像边缘轮廓的重建;将图像块相似组输入局部细节重构分支,通过其中的密集连接网络和多尺度编解码网络模块,获得对图像细节纹理的重建;将两分支重建图像进行融合,输出得到对原始图像的重建图;训练中,设计并采用结构组稀疏约束损失函数进行训练约束。这种方法能节约计算资源、能提高图像的重建精度。
-
公开(公告)号:CN114708281A
公开(公告)日:2022-07-05
申请号:CN202210392717.X
申请日:2022-04-15
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种基于自适应非局部特征融合网络的图像压缩感知重建方法,其特征在于,包括如下步骤:1)训练数据预处理;2)获取测数据yi;3)构造图像块压缩观测值yi协同重构组Yi;4)采用线性映射网络F获得初始重建图像块协同重构组Zi;5)将协同重构组Zi进行特征交互得到协同联合重建特征Zc;6)采用全局残差网络Fr对图像块zi进行增强重建获得重建图像z′i;7)采用图像块稀疏约束损失函数对网络训练进行约束。这种方法采用非局部特征为图像块重建提供互补信息,能有效恢复图像中的高频信息。
-
-
-