-
公开(公告)号:CN110222839A
公开(公告)日:2019-09-10
申请号:CN201910390150.0
申请日:2019-05-10
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种网络表示学习的方法、装置及存储介质,该方法包括:获取网络中各个节点的结构信息,基于所述结构信息建立结构转移矩阵;获取所述网络中各个节点的属性信息,基于所述属性信息建立属性转移矩阵;将所述结构转移矩阵以及所述属性转移矩阵进行融合,得到偏向转移矩阵;对所述偏向转移矩阵中的每个节点进行采样,获得多个游走序列;建立神经网络模型,将所述游走序列输入至所述神经网络模型中进行网络表示学习,获得所述游走序列对应的节点的表示向量。本发明可以无缝结合不同源的信息及降低计算的复杂度,提高网络表示的质量,以增强表示向量在网络分析任务上的效果。