-
公开(公告)号:CN119580208A
公开(公告)日:2025-03-07
申请号:CN202411313188.5
申请日:2024-09-20
Applicant: 桂林电子科技大学
IPC: G06V20/56 , G06V20/40 , G06V20/64 , G06V10/25 , G06V10/764 , G06V10/766 , G06V10/80 , G06V10/82 , G06T7/246 , G06N3/0455 , G06N3/0464 , G06N3/08
Abstract: 本发明提供一种基于DETR的3D目标检测与跟踪方法,方法包括:从LIDER相机获取连续帧的点云数据流;将连续帧的原始点云数据转换为规则的体素网格并提取其高维视频特征;学习了一组4D Tubelet Query,并利用时间自注意力和空间交叉注意力模块对视频片段的动态时空特性进行建模,以增强其表征能力;最后,本发明的模型对每个Tubelet Query进行边界框预测,使用集对集损失来衡量真实值与预测值之间的差异实现多目标跟踪任务的端到端学习。本发明通过设计Tubelet,深度挖掘并整合时空维度上的信息,将多目标跟踪任务简化为检测任务,以实现检测和跟踪任务的统一,减少了传统多目标跟踪对帧级检测器的严重依赖。