-
公开(公告)号:CN112419711B
公开(公告)日:2022-05-17
申请号:CN202011140333.6
申请日:2020-10-22
Applicant: 桂林电子科技大学 , 华蓝设计(集团)有限公司
Abstract: 本发明公开了一种基于改进GMDH算法的封闭式停车场停车需求预测方法,使用GMDH算法对封闭式停车场进场车流量训练,在训练过程中针对GMDH算法建模泛化能力差的问题,结合集成学习(Ensemble Learning)的思想对GMDH算法进行改进,提高GMDH模型泛化能力,并将改进的算法应用到封闭式停车场进场停车需求预测模型的构建中。该方法减少了对历史数据的依赖、降低了数据成本,并且具有较高的预测精度,可以快速、有效地对封闭式停车场停车需求进行预测。后期可基于用户均衡理论,结合智能交通诱导系统,实现区域性的、不同特性的停车场停车资源共享与调度,对智慧城市的建设具有重大的实用价值。
-
公开(公告)号:CN112307921B
公开(公告)日:2022-05-17
申请号:CN202011141884.4
申请日:2020-10-22
Applicant: 桂林电子科技大学 , 华蓝设计(集团)有限公司
Abstract: 本发明公开了一种车载端多目标识别跟踪预测方法,该方法是基于YOLOv5s(You Only Look Once v5s)和FairMOT(Fair Multi‑Object Tracking)融合的车载端多目标识别跟踪预测方法,通过使用YOLOv5s深度学习对象检测技术快速准确实时地检测道路前方车辆、行人、障碍物等,并将YOLOv5s模型融入FairMOT架构检测模块在单个网络中进行目标检测和重新识别跟踪,实现道路上车辆前方交通目标的位置检测、类型识别、多目标运动轨迹跟踪,从而达到对车辆前方交通目标换道、跟驰、减速等驾驶行为的预测。
-
公开(公告)号:CN110555990A
公开(公告)日:2019-12-10
申请号:CN201910809828.4
申请日:2019-08-29
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种基于LSTM神经网络的有效停车时空资源预测方法,首先,根据不同日子特性条件下的历史数据,采用LSTM神经网络建立停车时长预测模型,对未来某一时段内进场车辆的停车时长进行预估,得到预估消耗的停车资源;其次,建立下一时段内有效停车时空资源预测模型,通过综合当前统计时段内,进出场车辆与不出场车辆的时空利用数据信息,结合前一时段有效停车时空资源量,计算出下一时段的有效停车时空资源量。本发明方法提出两个模型以从时空资源的角度去呈现和计算停车场资源,模型鲁棒性好,预测结果精确度较高,对未来停车场实现高度共享和智慧化的停车预约服务与停车资源调度分配奠定了理论基础。
-
公开(公告)号:CN112419711B8
公开(公告)日:2022-06-14
申请号:CN202011140333.6
申请日:2020-10-22
Applicant: 桂林电子科技大学 , 广西华蓝工程管理有限公司 , 华蓝设计(集团)有限公司
Abstract: 本发明公开了一种基于改进GMDH算法的封闭式停车场停车需求预测方法,使用GMDH算法对封闭式停车场进场车流量训练,在训练过程中针对GMDH算法建模泛化能力差的问题,结合集成学习(Ensemble Learning)的思想对GMDH算法进行改进,提高GMDH模型泛化能力,并将改进的算法应用到封闭式停车场进场停车需求预测模型的构建中。该方法减少了对历史数据的依赖、降低了数据成本,并且具有较高的预测精度,可以快速、有效地对封闭式停车场停车需求进行预测。后期可基于用户均衡理论,结合智能交通诱导系统,实现区域性的、不同特性的停车场停车资源共享与调度,对智慧城市的建设具有重大的实用价值。
-
公开(公告)号:CN110555990B
公开(公告)日:2021-04-13
申请号:CN201910809828.4
申请日:2019-08-29
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种基于LSTM神经网络的有效停车时空资源预测方法,首先,根据不同日子特性条件下的历史数据,采用LSTM神经网络建立停车时长预测模型,对未来某一时段内进场车辆的停车时长进行预估,得到预估消耗的停车资源;其次,建立下一时段内有效停车时空资源预测模型,通过综合当前统计时段内,进出场车辆与不出场车辆的时空利用数据信息,结合前一时段有效停车时空资源量,计算出下一时段的有效停车时空资源量。本发明方法提出两个模型以从时空资源的角度去呈现和计算停车场资源,模型鲁棒性好,预测结果精确度较高,对未来停车场实现高度共享和智慧化的停车预约服务与停车资源调度分配奠定了理论基础。
-
公开(公告)号:CN112419711A
公开(公告)日:2021-02-26
申请号:CN202011140333.6
申请日:2020-10-22
Applicant: 桂林电子科技大学 , 华蓝设计(集团)有限公司
Abstract: 本发明公开了一种基于改进GMDH算法的封闭式停车场停车需求预测方法,使用GMDH算法对封闭式停车场进场车流量训练,在训练过程中针对GMDH算法建模泛化能力差的问题,结合集成学习(Ensemble Learning)的思想对GMDH算法进行改进,提高GMDH模型泛化能力,并将改进的算法应用到封闭式停车场进场停车需求预测模型的构建中。该方法减少了对历史数据的依赖、降低了数据成本,并且具有较高的预测精度,可以快速、有效地对封闭式停车场停车需求进行预测。后期可基于用户均衡理论,结合智能交通诱导系统,实现区域性的、不同特性的停车场停车资源共享与调度,对智慧城市的建设具有重大的实用价值。
-
公开(公告)号:CN112307921A
公开(公告)日:2021-02-02
申请号:CN202011141884.4
申请日:2020-10-22
Applicant: 桂林电子科技大学 , 华蓝设计(集团)有限公司
Abstract: 本发明公开了一种车载端多目标识别跟踪预测方法,该方法是基于YOLOv5s(You Only Look Once v5s)和FairMOT(Fair Multi‑Object Tracking)融合的车载端多目标识别跟踪预测方法,通过使用YOLOv5s深度学习对象检测技术快速准确实时地检测道路前方车辆、行人、障碍物等,并将YOLOv5s模型融入FairMOT架构检测模块在单个网络中进行目标检测和重新识别跟踪,实现道路上车辆前方交通目标的位置检测、类型识别、多目标运动轨迹跟踪,从而达到对车辆前方交通目标换道、跟驰、减速等驾驶行为的预测。
-
-
-
-
-
-