-
公开(公告)号:CN108445406B
公开(公告)日:2021-05-25
申请号:CN201810205365.6
申请日:2018-03-13
Applicant: 桂林电子科技大学
IPC: G01R31/385 , G01R31/392 , G01R31/367
Abstract: 本发明公开一种动力电池健康状态估计方法,由采集电池恒流充电的电池电压V、电流I、时间t求得充电容量Q、建立V‑Q关系曲线、容量增量曲线峰值及峰值位置信息获取、RBF神经网络建立、粒子群算法训练RBF神经网络模型、利用已经生成的RBF神经网络估计电池健康状态几个步骤组成。本发明在不需要建立电动汽车动力电池等效电路的情况下,通过数据驱动的方式建立恒流充电的容量增量曲线峰值、峰值位置与电池健康状态的映射关系,提高估计精度,实现在线实时估计,可以实现电池组整体估计。
-
公开(公告)号:CN108445406A
公开(公告)日:2018-08-24
申请号:CN201810205365.6
申请日:2018-03-13
Applicant: 桂林电子科技大学
IPC: G01R31/36
Abstract: 本发明公开一种动力电池健康状态估计方法,由采集电池恒流充电的电池电压V、电流I、时间t求得充电容量Q、建立V-Q关系曲线、容量增量曲线峰值及峰值位置信息获取、RBF神经网络建立、粒子群算法训练RBF神经网络模型、利用已经生成的RBF神经网络估计电池健康状态几个步骤组成。本发明在不需要建立电动汽车动力电池等效电路的情况下,通过数据驱动的方式建立恒流充电的容量增量曲线峰值、峰值位置与电池健康状态的映射关系,提高估计精度,实现在线实时估计,可以实现电池组整体估计。
-