基于波形叠加布谷鸟优化的极限学习机分类方法

    公开(公告)号:CN104166691A

    公开(公告)日:2014-11-26

    申请号:CN201410365700.0

    申请日:2014-07-29

    CPC classification number: G06K9/6268

    Abstract: 本发明为一种基于波形叠加布谷鸟优化的极限学习机分类方法,主要步骤为:Ⅰ、建立训练样本矩阵;Ⅱ、在每个隐层节点上生成M个初始寄生巢;Ⅲ、求波形叠加极限学习机分类模型的分类准确度;Ⅳ、训练样本随机等分为份,求交叉验证的极限学习机分类模型的分类准确度输出值;Ⅴ、用反双曲线正弦函数和Morlet小波函数叠加作为极限学习机的激励函数,构建波形叠加极限学习机分类模型,得布谷鸟算法当前代分类准确度;Ⅵ、求布谷鸟算法的下一代结果,以概率Pa新建寄生巢;Ⅶ、重复迭代,判断是否终止迭代,满足终止条件则建立最佳极限学习机分类模型,用于对于未知样本进行分类。本方法计算复杂度低,效率高,分类性能稳定精度高,全局最优、性泛化能力强。

Patent Agency Ranking