一种基于时空显著性区域检测的人体行为分析方法

    公开(公告)号:CN107563345A

    公开(公告)日:2018-01-09

    申请号:CN201710847985.5

    申请日:2017-09-19

    Abstract: 本发明公开一种基于时空显著性区域检测的人体行为分析方法,利用数据集训练Faster R-CNN模型;输入多路视频并将单路视频分割成视频图像帧;对分割的视频图像帧使用Faster R-CNN模型进行目标检测;分析目标检测结果并重新计算目标候选框;对单路视频使用块匹配构造运动矢量场;通过运动矢量场计算感兴趣区域的运动矢量,用混合高斯模型计算出的概率选定前景显著运动区域;根据目标候选框和显著运动区域合成时空显著性区域;对目标时空显著性区域进行特征采样和特征预处理;对视频的目标时空显著性区域进行编码和池化;对视频的时空显著性区域进行人体行为分析识别;将分析识别结果写入时空显著性区域框。本发明使可以合理分析视频中的人体行为活动的所属类别。

    一种基于时空显著性区域检测的人体行为分析方法

    公开(公告)号:CN107563345B

    公开(公告)日:2020-05-22

    申请号:CN201710847985.5

    申请日:2017-09-19

    Abstract: 本发明公开一种基于时空显著性区域检测的人体行为分析方法,利用数据集训练Faster R‑CNN模型;输入多路视频并将单路视频分割成视频图像帧;对分割的视频图像帧使用Faster R‑CNN模型进行目标检测;分析目标检测结果并重新计算目标候选框;对单路视频使用块匹配构造运动矢量场;通过运动矢量场计算感兴趣区域的运动矢量,用混合高斯模型计算出的概率选定前景显著运动区域;根据目标候选框和显著运动区域合成时空显著性区域;对目标时空显著性区域进行特征采样和特征预处理;对视频的目标时空显著性区域进行编码和池化;对视频的时空显著性区域进行人体行为分析识别;将分析识别结果写入时空显著性区域框。本发明使可以合理分析视频中的人体行为活动的所属类别。

    一种面向多路视频的人体行为事件实时分析方法

    公开(公告)号:CN107527045A

    公开(公告)日:2017-12-29

    申请号:CN201710851835.1

    申请日:2017-09-19

    Abstract: 本发明公开一种面向多路视频的人体行为事件实时分析方法,前端摄像机通过RTMP协议将采集到的视频内容推送到服务器端;服务器接收视频内容并将RTMP协议流媒体转换为HLS协议;服务器开启索引文件定时扫描线程,读取HLS协议中的M3U8索引文件,得到索引中指定的TS视频文件名,并将其加入作业队列;循环读取队列中的作业,每个作业在服务器端开启相应子线程,子线程并发地对每个作业的视频内容进行分析识别;将分析识别的结果写入原视频片段,最终展现到客户端,或将信息提交到其他预警系统中。本发明采用多路并发处理前端摄像机的视频流数据,后台服务器的多线程直接对前端多路摄像机做一对一的多路并发处理,从而实时响应多路视频的人体行为事件分析。

Patent Agency Ranking