-
公开(公告)号:CN112751001B
公开(公告)日:2022-03-15
申请号:CN202011600641.2
申请日:2020-12-29
Applicant: 格林美(无锡)能源材料有限公司 , 格林美股份有限公司
IPC: H01M4/36 , H01M4/505 , H01M4/525 , H01M4/62 , H01M10/054
Abstract: 本发明公开一种钼掺杂氧化铟包覆镍锰酸钠正极材料及其制备方法。该钼掺杂氧化铟包覆镍锰酸钠正极材料的制备方法,包括如下步骤:将镍锰酸钠正极材料和钼掺氧化铟纳米颗粒按照100:(0.2~0.8)的质量比加入到高速混料器中均匀混合,随后在250~750℃下焙烧2~8h,得到钼掺氧化铟包覆的镍锰酸钠正极材料。本发明通过在镍锰酸钠正极材料表面包覆钼掺杂氧化铟提高材料的循环性能,并缓解常规包覆带来的电阻增大的问题,避免包覆后倍率性能显著降低;本发明的制备方法简单,有利于实现批量化生产。
-
公开(公告)号:CN113522868A
公开(公告)日:2021-10-22
申请号:CN202110730410.1
申请日:2021-06-29
Applicant: 格林美(无锡)能源材料有限公司 , 格林美股份有限公司
Abstract: 本发明公开一种去除正极材料表面残碱的洗涤方法,包括以下步骤:将非质子非极性溶剂与水混合后分散均匀,得到混合液;其中,非质子非极性溶剂的密度为1.0g/cm3~4.8g/cm3;将待水洗的三元材料LiNixCoyMnzO2加入到所述混合液中洗涤,随后经静置分层、除水、过滤、干燥,得到去除表面残碱的三元材料。本发明通过非质子非极性溶剂作为水洗过程中的载体,避免水洗后水分残留,从而达到完全去除三元材料表面残碱的目的,可以避免烘干过程中传统质子溶剂中H+与正极材料表面的Li+的无电子交换反应,减小表面相变。
-
公开(公告)号:CN113912045B
公开(公告)日:2023-03-28
申请号:CN202111136657.7
申请日:2021-09-27
Applicant: 格林美(无锡)能源材料有限公司 , 格林美股份有限公司
IPC: C01B32/184 , C01B32/194 , C01B25/45 , H01M4/36 , H01M4/58 , H01M4/62 , H01M10/054
Abstract: 本发明公开一种NaTi2V(PO4)4/三维石墨烯复合材料及其制备方法和应用。该制备方法,包括以下步骤:将多层氧化石墨烯溶液调节pH至10~12,随后进行第一水热反应,经冷冻干燥,得到三维石墨烯;将三维石墨烯、钠源、钛源、磷源、钒源加入水和丙三醇中,进行第二水热反应,得到NaTi2V(PO4)4/三维石墨烯前驱体;将NaTi2V(PO4)4/三维石墨烯前驱体进行煅烧,得到NaTi2V(PO4)4/三维石墨烯复合材料。本发明采用两步水热法,先合成三维石墨烯,再以三维石墨烯为模板合成NaTi2V(PO4)4/三维石墨烯前驱体,最后在氮气气氛下烧结得到NaTi2V(PO4)4/三维石墨烯复合材料,所得复合材料具有三维导电网络,电子传输能力强,以其作为钠电池的正极材料,可以不使用导电碳作为极片的导电网络和支撑骨架,极大的简化了电芯极片的制作工艺。
-
公开(公告)号:CN113912045A
公开(公告)日:2022-01-11
申请号:CN202111136657.7
申请日:2021-09-27
Applicant: 格林美(无锡)能源材料有限公司 , 格林美股份有限公司
IPC: C01B32/184 , C01B32/194 , C01B25/45 , H01M4/36 , H01M4/58 , H01M4/62 , H01M10/054
Abstract: 本发明公开一种NaTi2V(PO4)4/三维石墨烯复合材料及其制备方法和应用。该制备方法,包括以下步骤:将多层氧化石墨烯溶液调节pH至10~12,随后进行第一水热反应,经冷冻干燥,得到三维石墨烯;将三维石墨烯、钠源、钛源、磷源、钒源加入水和丙三醇中,进行第二水热反应,得到NaTi2V(PO4)4/三维石墨烯前驱体;将NaTi2V(PO4)4/三维石墨烯前驱体进行煅烧,得到NaTi2V(PO4)4/三维石墨烯复合材料。本发明采用两步水热法,先合成三维石墨烯,再以三维石墨烯为模板合成NaTi2V(PO4)4/三维石墨烯前驱体,最后在氮气气氛下烧结得到NaTi2V(PO4)4/三维石墨烯复合材料,所得复合材料具有三维导电网络,电子传输能力强,以其作为钠电池的正极材料,可以不使用导电碳作为极片的导电网络和支撑骨架,极大的简化了电芯极片的制作工艺。
-
公开(公告)号:CN112670485A
公开(公告)日:2021-04-16
申请号:CN202011564388.X
申请日:2020-12-25
Applicant: 格林美(无锡)能源材料有限公司 , 格林美股份有限公司
Abstract: 本发明公开了一种锂离子电池正极材料及其制备方法,该锂离子电池正极材料包括共掺杂正极材料LinNixCoyMn(1‑x‑y)MzO2以及包覆共掺杂正极材料的碳化钨,其中M为Mg、Al、Zn混合构成的共掺杂物且三者的摩尔比依次为(0.1~1):(0.1~1):(0.1~1),0.9≤n≤1.2,0.00001≤z≤0.1,0.01≤x≤1,0.01≤y≤1,所述共掺杂正极材料与碳化钨的摩尔比为1:(0.008~0.012)。本发明通过镁铝锌源与镍钴锰三元前驱体混合烧结,以及碳化钨的包覆,使镍钴锰三元正极材料的结构稳定性显著增强,同时显著提高了镍钴锰三元正极材料的耐腐蚀能力以及电容量。
-
公开(公告)号:CN113782737A
公开(公告)日:2021-12-10
申请号:CN202111006453.1
申请日:2021-08-30
Applicant: 格林美(无锡)能源材料有限公司 , 格林美股份有限公司
Abstract: 本发明公开了一种氟铬铝共包覆镍钴锰正极材料及其制备方法,该氟铬铝共包覆镍钴锰正极材料,其化学式为LinNi(1‑x‑y‑a)CoxMnyMaO2‑bFb,其中M为Cr和Al混合构成的共掺杂物,F、Cr、Al三者的摩尔比为(0.1~1):(0.1~1):(0.1~1),0.9≤n≤1.2,0.01≤x≤1,0.01≤y≤1,0.01≤y≤1,0.0001≤a+b≤0.1,0.01≤b≤4a。本发明通过氟铬铝源与镍钴锰三元前驱体混合烧结,使三元正极材料在低温下的锂离子扩散速率显著提升,提供了三元正极材料低温下的放电容量和循环性能。
-
公开(公告)号:CN112751001A
公开(公告)日:2021-05-04
申请号:CN202011600641.2
申请日:2020-12-29
Applicant: 格林美(无锡)能源材料有限公司 , 格林美股份有限公司
IPC: H01M4/36 , H01M4/505 , H01M4/525 , H01M4/62 , H01M10/054
Abstract: 本发明公开一种钼掺杂氧化铟包覆镍锰酸钠正极材料及其制备方法。该钼掺杂氧化铟包覆镍锰酸钠正极材料的制备方法,包括如下步骤:将镍锰酸钠正极材料和钼掺氧化铟纳米颗粒按照100:(0.2~0.8)的质量比加入到高速混料器中均匀混合,随后在250~750℃下焙烧2~8h,得到钼掺氧化铟包覆的镍锰酸钠正极材料。本发明通过在镍锰酸钠正极材料表面包覆钼掺杂氧化铟提高材料的循环性能,并缓解常规包覆带来的电阻增大的问题,避免包覆后倍率性能显著降低;本发明的制备方法简单,有利于实现批量化生产。
-
公开(公告)号:CN112582594A
公开(公告)日:2021-03-30
申请号:CN202011466135.9
申请日:2020-12-14
Applicant: 格林美(无锡)能源材料有限公司 , 格林美股份有限公司
IPC: H01M4/36 , H01M4/505 , H01M4/525 , H01M4/62 , H01M10/0525
Abstract: 本发明公开一种无钴单晶正极材料及其制备方法和应用。该无钴单晶正极材料的制备方法,包括:将Ni‑Mn基前驱体、锂源和掺杂剂M充分混合,随后经退火、冷却和粉碎过筛,得到掺杂型Ni‑Mn基核层材料;将Ni‑Al基前驱体、锂源和掺杂剂N充分混合,随后经退火、冷却和砂磨处理至纳米级,得到掺杂型Ni‑Al基壳层材料;将掺杂型Ni‑Mn基核层材料与掺杂型Ni‑Al基壳层材料充分混合,随后经煅烧、冷却和过筛,得到掺杂型核壳结构无钴单晶正极材料。本发明通过以Ni‑Mn基材料为核层、Ni‑Al基材料为壳层制备无钴单晶层状正极材料,该核壳结构以及元素掺杂的协同机制,显著提高了该材料在高压下的循环稳定性。
-
公开(公告)号:CN215507179U
公开(公告)日:2022-01-14
申请号:CN202120485763.5
申请日:2021-03-05
Applicant: 格林美(无锡)能源材料有限公司 , 格林美股份有限公司
Abstract: 本实用新型公开一种物料破碎装置,其包括:混料箱,其上开设有出料管;第一吸料组件,其包括第一供气管和第一吸料管,第一吸料管一端连接流化床,其另一端连通第一供气管,第一供气管一端连接气源,其另一端连通混料箱;第二吸料组件,其包括第二供气管和第二吸料管,第二吸料管一端连接流化床,其另一端连通第二供气管,第二供气管一端连接气源,其另一端连通混料箱,以使第二供气管中流出的流体冲撞第一供气管中流出的流体。第一供气管中的高速气流形成负压吸取流化床中的物料。第二供气管中的高速气流形成负压吸取流化床中的物料,两股相互冲撞的流体会打散结块的物料,从而避免了结块的物料影响后续工艺的处理效果。
-
-
-
-
-
-
-
-