-
公开(公告)号:CN115375922B
公开(公告)日:2023-08-25
申请号:CN202211098512.7
申请日:2022-09-03
Applicant: 杭州电子科技大学 , 中电数据服务有限公司
IPC: G06V10/52 , G06N3/0464 , G06N3/048 , G06N3/08 , G06V10/32 , G06V10/34 , G06V10/80 , G06V10/82 , G06V10/26
Abstract: 本发明涉及一种基于多尺度空间注意力的轻量化显著性检测方法,包括以下步骤:步骤一、构建多尺度特征提取模块,并对输入信息进行处理;步骤二、依据深度可分离卷积及多尺度特征提取模块构建编码器,用于获取多级语义特征;步骤三、构建多尺度空间注意力模块;步骤四、依据深度可分离卷积与多尺度空间注意力模块构建解码器;步骤五、以编码器、解码器为基础,建立轻量化显著性检测模型;步骤六、对所建立轻量化显著性检测模型进行训练,并保存训练所得最终模型参数;本发明通过对图像中多尺度特征的充分挖掘以及图像全局特征的提取与利用,强化了轻量化模型的检测能力,在保持轻量化模型自身优势的同时,提升了模型的检测精度。
-
公开(公告)号:CN115375922A
公开(公告)日:2022-11-22
申请号:CN202211098512.7
申请日:2022-09-03
Applicant: 杭州电子科技大学 , 中电数据服务有限公司
Abstract: 本发明涉及一种基于多尺度空间注意力的轻量化显著性检测方法,包括以下步骤:步骤一、构建多尺度特征提取模块,并对输入信息进行处理;步骤二、依据深度可分离卷积及多尺度特征提取模块构建编码器,用于获取多级语义特征;步骤三、构建多尺度空间注意力模块;步骤四、依据深度可分离卷积与多尺度空间注意力模块构建解码器;步骤五、以编码器、解码器为基础,建立轻量化显著性检测模型;步骤六、对所建立轻量化显著性检测模型进行训练,并保存训练所得最终模型参数;本发明通过对图像中多尺度特征的充分挖掘以及图像全局特征的提取与利用,强化了轻量化模型的检测能力,在保持轻量化模型自身优势的同时,提升了模型的检测精度。
-