-
公开(公告)号:CN110969108A
公开(公告)日:2020-04-07
申请号:CN201911168627.7
申请日:2019-11-25
Applicant: 杭州电子科技大学
IPC: G06K9/00 , G06K9/62 , A61B5/0476 , A61B5/00
Abstract: 本发明是一种基于自主运动想象脑电的肢体动作识别方法,调查数据表明,当人做同一个动作时,大脑会产生类似的脑电信号,因此可以提取这些特征信号来实现机械臂的运动,进而辅助残疾人运动。本发明通过建立脑网络进行动作的分类,这种方法加强了大脑各个区域之间相关性的考虑,展现了EEG信号及其相关节律特征背后的工作机制。之后通过一种全新的基于非线性部分定向相干方法的脑因效性网络分析法,利用随机森林进行进行上肢运动分类,分类准确度高,根据脑电信号判断相应的动作,从而使得机械臂运动,达到残疾人辅助运动的目的。
-
公开(公告)号:CN110969108B
公开(公告)日:2023-04-07
申请号:CN201911168627.7
申请日:2019-11-25
Applicant: 杭州电子科技大学
IPC: G06F18/15 , A61B5/372 , A61B5/369 , A61B5/11 , G06F18/2431 , G06F18/213
Abstract: 本发明是一种基于自主运动想象脑电的肢体动作识别方法,调查数据表明,当人做同一个动作时,大脑会产生类似的脑电信号,因此可以提取这些特征信号来实现机械臂的运动,进而辅助残疾人运动。本发明通过建立脑网络进行动作的分类,这种方法加强了大脑各个区域之间相关性的考虑,展现了EEG信号及其相关节律特征背后的工作机制。之后通过一种全新的基于非线性部分定向相干方法的脑因效性网络分析法,利用随机森林进行进行上肢运动分类,分类准确度高,根据脑电信号判断相应的动作,从而使得机械臂运动,达到残疾人辅助运动的目的。
-
公开(公告)号:CN111789592B
公开(公告)日:2022-04-05
申请号:CN202010620170.5
申请日:2020-06-30
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于拓扑特征融合的脑电识别方法,本发明为了提高手部动作分类的性能,采用了一种LBELM和基于似然同步分析方法量化脑功能网络的新方法。与传统思想不同,本发明对二值FBN提取了两种最优的拓扑特征,并通过LBELM对两种最优的拓扑特征进行LBELM特征空间层的融合;同时本发明对LBELM做出了进一步的改进,增加了隐藏层参数优化以获得更高、更稳定的识别效果;使用了基于MSEPRESS的留一法优化算法,以获得最优的正则化系数和融合比例。
-
公开(公告)号:CN111814544B
公开(公告)日:2024-12-17
申请号:CN202010484729.6
申请日:2020-06-01
Applicant: 杭州电子科技大学
IPC: G06F18/24 , G06F18/213 , G06F18/25 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种基于局部平衡极限学习机的动态运动想象脑电识别方法,本发明为了提高手部动作分类的性能,采用了一种局部平衡ELM和基于SL量化FBN的新方法。与传统思想不同,本发明从上述加权的FBN提取了两种二值子网络的拓扑特征。此外,本发明指出了ELM融合中的两个不足,并提出了相应的局部平衡ELM。为了达到两个互补特征在ELM特征空间的最佳融合,以及二值化的最佳阈值和正则化ELM的最佳正则化参数,本专利改进了LOO方法的计算复杂度,使用LOO来收敛上述参数的经验范围。
-
公开(公告)号:CN111814544A
公开(公告)日:2020-10-23
申请号:CN202010484729.6
申请日:2020-06-01
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于局部平衡极限学习机的动态运动想象脑电识别方法,本发明为了提高手部动作分类的性能,采用了一种局部平衡ELM和基于SL量化FBN的新方法。与传统思想不同,本发明从上述加权的FBN提取了两种二值子网络的拓扑特征。此外,本发明指出了ELM融合中的两个不足,并提出了相应的局部平衡ELM。为了达到两个互补特征在ELM特征空间的最佳融合,以及二值化的最佳阈值和正则化ELM的最佳正则化参数,本专利改进了LOO方法的计算复杂度,使用LOO来收敛上述参数的经验范围。
-
公开(公告)号:CN111789592A
公开(公告)日:2020-10-20
申请号:CN202010620170.5
申请日:2020-06-30
Applicant: 杭州电子科技大学
IPC: A61B5/0484 , A61B5/0478
Abstract: 本发明公开了一种基于拓扑特征融合的脑电识别方法,本发明为了提高手部动作分类的性能,采用了一种LBELM和基于似然同步分析方法量化脑功能网络的新方法。与传统思想不同,本发明对二值FBN提取了两种最优的拓扑特征,并通过LBELM对两种最优的拓扑特征进行LBELM特征空间层的融合;同时本发明对LBELM做出了进一步的改进,增加了隐藏层参数优化以获得更高、更稳定的识别效果;使用了基于MSEPRESS的留一法优化算法,以获得最优的正则化系数和融合比例。
-
-
-
-
-