-
公开(公告)号:CN111259940A
公开(公告)日:2020-06-09
申请号:CN202010024750.8
申请日:2020-01-10
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于空间注意力地图的目标检测方法,包括:将测试图像输入预先训练好的Faster RCNN网络,自下向上逐层进行特征提取、自上向下逐层进行高层语义信息传播,得到目标的空间特征信息和特征梯度信息;对目标的空间特征信息和特征梯度信息进行加权得到目标高层语义信息引导的注意力地图;对目标空间特征信息进行数据预处理,得到目标感兴趣区域图;叠加目标感兴趣区域图和注意力地图,得到目标注意力地图;将目标注意力地图与通道特征权重进行计算得到多通道空间注意力地图;将多通道空间注意力地图与目标空间特征信息结合得到新的目标空间特征信息;将新的目标空间特征信息联合RPN网络的目标候选框提取出进行目标分类和边界框回归的特征。
-
公开(公告)号:CN111259940B
公开(公告)日:2023-04-07
申请号:CN202010024750.8
申请日:2020-01-10
Applicant: 杭州电子科技大学
IPC: G06V10/764 , G06V10/82 , G06V10/774 , G06N3/0455 , G06N3/0464 , G06N3/045 , G06N3/084
Abstract: 本发明公开了一种基于空间注意力地图的目标检测方法,包括:将测试图像输入预先训练好的Faster RCNN网络,自下向上逐层进行特征提取、自上向下逐层进行高层语义信息传播,得到目标的空间特征信息和特征梯度信息;对目标的空间特征信息和特征梯度信息进行加权得到目标高层语义信息引导的注意力地图;对目标空间特征信息进行数据预处理,得到目标感兴趣区域图;叠加目标感兴趣区域图和注意力地图,得到目标注意力地图;将目标注意力地图与通道特征权重进行计算得到多通道空间注意力地图;将多通道空间注意力地图与目标空间特征信息结合得到新的目标空间特征信息;将新的目标空间特征信息联合RPN网络的目标候选框提取出进行目标分类和边界框回归的特征。
-