一种基于双侧非对称感受野机制的显著轮廓提取方法

    公开(公告)号:CN110929734A

    公开(公告)日:2020-03-27

    申请号:CN201910978372.4

    申请日:2019-10-15

    Abstract: 本发明提出了一种基于双侧非对称感受野机制的显著轮廓提取方法。针对复杂图像轮廓提取时纹理信息处理不足的问题,首先提取图像初级轮廓响应;接着引入非对称感受野结构对于局部区域对比度差异度的凸显作用,同时考虑到单侧的非对称感受野会造成对图像初级轮廓的不均衡,提出基于双侧非对称感受野多尺度抑制的权重信息融合策略,得到融合后的抑制权重系数;最后对图像初级轮廓响应进行局部区域不同强度的纹理抑制,实现显著轮廓提取。本发明能够有效提高纹理边缘和主体轮廓区分的有效性,对后续图像目标的理解和分析具有重要的意义。

    一种基于轮廓和颜色特征融合编码的图像去雾方法

    公开(公告)号:CN110880165A

    公开(公告)日:2020-03-13

    申请号:CN201910977828.5

    申请日:2019-10-15

    Abstract: 本发明提出了一种基于轮廓和颜色特征融合编码的图像去雾方法。本发明构建生成网络和判别网络,将待处理图像输入Generator-Net,首先提取带雾图像的整体轮廓特征,在低级特征编码区提取图像颜色特征,实现轮廓特征的融合编码;在高级语义编码区,实现反向传播过程语义信息的深度解析;融合低级特征编码的输出及高级语义编码的多层输出,通过卷积神经网络进行特征解码,实现图像去雾。在网络学习过程中,将生成的去雾图像和对应的样本标签输入到Discriminator-Net,进一步提升Generator-Net的去雾能力。本发明有效提升去雾图像的可见度、对比度以及鲜明度,对后续图像目标的分析和理解具有重要意义。

    一种基于双侧非对称感受野机制的显著轮廓提取方法

    公开(公告)号:CN110929734B

    公开(公告)日:2023-03-24

    申请号:CN201910978372.4

    申请日:2019-10-15

    Abstract: 本发明提出了一种基于双侧非对称感受野机制的显著轮廓提取方法。针对复杂图像轮廓提取时纹理信息处理不足的问题,首先提取图像初级轮廓响应;接着引入非对称感受野结构对于局部区域对比度差异度的凸显作用,同时考虑到单侧的非对称感受野会造成对图像初级轮廓的不均衡,提出基于双侧非对称感受野多尺度抑制的权重信息融合策略,得到融合后的抑制权重系数;最后对图像初级轮廓响应进行局部区域不同强度的纹理抑制,实现显著轮廓提取。本发明能够有效提高纹理边缘和主体轮廓区分的有效性,对后续图像目标的理解和分析具有重要的意义。

Patent Agency Ranking