基于粒子群优化-支持向量机的肌电信号步态识别方法

    公开(公告)号:CN104107042A

    公开(公告)日:2014-10-22

    申请号:CN201410326582.2

    申请日:2014-07-10

    Abstract: 本发明涉及一种基于粒子群优化-支持向量机的肌电信号步态识别方法。本发明利用粒子群优化算法,优化支持向量机的惩罚参数和核函数参数,从而优化支持向量机的性能,实现有效识别分类。首先对采集的下肢肌电信号进行小波模极大值去噪;其次对消噪后的肌电信号提取时域特征,得到特征样本;然后利用利用粒子群优化算法进行支持向量机的参数优化,得到误差最小的一组最优参数,构造分类器;最后将肌电信号特征样本集输入分类器随对步行状态进行分类识别。本发明方法兼顾分类的准确性和自适应性,计算过程简单、高效,在下肢运动状态识别领域具有广阔的应用前景。

Patent Agency Ranking