一种基于巴氏相似性的目标视觉感知方法

    公开(公告)号:CN103065316B

    公开(公告)日:2016-03-30

    申请号:CN201210582688.X

    申请日:2012-12-28

    Abstract: 本发明公开了一种基于巴氏相似性的目标视觉感知方法,包括以下步骤:(1)根据输入的视频图像序列,通过手动方式对场景的感知区域进行设置,并在视频图像序列中对感知区域进行标记;(2)建立感知区域当前直方图模型,建立感知区域自适应背景直方图模型;(3)利用巴氏相似性计算公式,结合感知区域当前直方图模型和感知区域自适应背景直方图模型,计算感知区域直方图模型巴氏相似性系数;(4)用算得的巴氏相似性系数进行巴氏相似性目标视觉感知;(5)对感知区域进行自适应背景更新。本发明方法不仅适用于视频监控场合,也适用于仅有静态图像传送的监控场合,更加符合人类对目标的视觉感知方式,有着广泛的应用前景。

    一种基于巴氏相似性的目标视觉感知方法

    公开(公告)号:CN103065316A

    公开(公告)日:2013-04-24

    申请号:CN201210582688.X

    申请日:2012-12-28

    Abstract: 本发明公开了一种基于巴氏相似性的目标视觉感知方法,包括以下步骤:(1)根据输入的视频图像序列,通过手动方式对场景的感知区域进行设置,并在视频图像序列中对感知区域进行标记;(2)建立感知区域当前直方图模型,建立感知区域自适应背景直方图模型;(3)利用巴氏相似性计算公式,结合感知区域当前直方图模型和感知区域自适应背景直方图模型,计算感知区域直方图模型巴氏相似性系数;(4)用算得的巴氏相似性系数进行巴氏相似性目标视觉感知;(5)对感知区域进行自适应背景更新。本发明方法不仅适用于视频监控场合,也适用于仅有静态图像传送的监控场合,更加符合人类对目标的视觉感知方式,有着广泛的应用前景。

    一种基于减法聚类的快速图像分割方法

    公开(公告)号:CN102903104A

    公开(公告)日:2013-01-30

    申请号:CN201210337838.0

    申请日:2012-09-13

    Abstract: 本发明公开了一种基于减法聚类的快速图像分割方法。本发明首先将所有像素点归一化到一个超立方体中,对等待聚类的所有像素进行等间隔均匀采样后重组;在重组的像素中,计算采样像素点两两之间的密度权值矩阵及其逆阵以及采样像素与剩余未采样像素之间的密度权值矩阵。然后计算逼近的未采样像素两两之间的密度权值矩阵和计算所有像素点的密度值。最后计算所有像素的最大密度值并获得聚类中心,为找出新的聚类中心,需对每个像素点的密度值进行衰减,该过程不断迭代,根据终止条件停止迭代。本发明与经典的减法聚类方法相比,本发明在不影响聚类结果的情况下,对于较大规模数据集,大大提高减法聚类方法的实时性。

    一种基于尺度不变特征转换特征向量的前方车辆检测方法

    公开(公告)号:CN102902962A

    公开(公告)日:2013-01-30

    申请号:CN201210362840.3

    申请日:2012-09-26

    Abstract: 本发明公开了一种基于尺度不变特征转换特征向量的前方车辆检测方法,现有的方法鲁棒性不好,容易受到背景、光照条件、阴霾等影响。本发明首先在输入图像中建立感兴趣区域,利用图像尺度不变特征转换特征向量检测方法,提取输入图像的感兴趣区域内的尺度不变特征转换特征向量。其次对尺度不变特征转换特征向量进行对称编码和匹配。然后对匹配点点对进行进一步聚类筛选,建立匹配点点对集合。最后利用匹配点点对集合进一步筛选匹配点点对;并在在输入原图中分别标记对称点和对称轴,完成前方车辆检测方法。本发明方法使用尺度不变特征转换特征更具有良好的鲁棒性,提高了车辆检测的准确度,并具有良好的识别效果,且易于实现。

    一种基于尺度不变特征转换特征向量的前方车辆检测方法

    公开(公告)号:CN102902962B

    公开(公告)日:2015-08-26

    申请号:CN201210362840.3

    申请日:2012-09-26

    Abstract: 本发明公开了一种基于尺度不变特征转换特征向量的前方车辆检测方法,现有的方法鲁棒性不好,容易受到背景、光照条件、阴霾等影响。本发明首先在输入图像中建立感兴趣区域,利用图像尺度不变特征转换特征向量检测方法,提取输入图像的感兴趣区域内的尺度不变特征转换特征向量。其次对尺度不变特征转换特征向量进行对称编码和匹配。然后对匹配点点对进行进一步聚类筛选,建立匹配点点对集合。最后利用匹配点点对集合进一步筛选匹配点点对;并在输入原图中分别标记对称点和对称轴,完成前方车辆检测方法。本发明方法使用尺度不变特征转换特征更具有良好的鲁棒性,提高了车辆检测的准确度,并具有良好的识别效果,且易于实现。

    一种基于减法聚类的快速图像分割方法

    公开(公告)号:CN102903104B

    公开(公告)日:2015-04-29

    申请号:CN201210337838.0

    申请日:2012-09-13

    Abstract: 本发明公开了一种基于减法聚类的快速图像分割方法。本发明首先将所有像素点归一化到一个超立方体中,对等待聚类的所有像素进行等间隔均匀采样后重组;在重组的像素中,计算采样像素点两两之间的密度权值矩阵及其逆阵以及采样像素与剩余未采样像素之间的密度权值矩阵。然后计算逼近的未采样像素两两之间的密度权值矩阵和计算所有像素点的密度值。最后计算所有像素的最大密度值并获得聚类中心,为找出新的聚类中心,需对每个像素点的密度值进行衰减,该过程不断迭代,根据终止条件停止迭代。本发明与经典的减法聚类方法相比,本发明在不影响聚类结果的情况下,对于较大规模数据集,大大提高减法聚类方法的实时性。

Patent Agency Ranking