-
公开(公告)号:CN114506875A
公开(公告)日:2022-05-17
申请号:CN202111641623.3
申请日:2021-12-29
Applicant: 杭州电子科技大学
IPC: C01G45/00 , H01M4/58 , H01M10/0525
Abstract: 本发明属于功能纳米材料制备技术领域,涉及一种过渡金属碳酸盐纳米材料的制备方法,将金属有机框架配合物MOFs前驱体作为金属源加入到溶剂中,搅拌分散均匀得MOFs悬浮液;配置碳酸盐溶液,将其与MOFs悬浮液混合反应,过滤、洗涤烘干后得到产物过渡金属碳酸盐纳米材料。本发明通过以MOF为反应金属源前驱体,来实现独特纳米结构的金属碳酸盐材料的可控制备,所得材料在锂离子电池应用中,展示出良好的性能,相比于传统的金属碳酸盐纳米材料的制备方法,此发明的制备方法简单,原料价廉易得,成本低,制备时间短,生产效率高,同时对金属碳酸盐材料形貌结构的调控效果好,极易用于大规模工业生产,具有良好的应用前景。
-
公开(公告)号:CN114314669B
公开(公告)日:2022-06-10
申请号:CN202111647141.9
申请日:2021-12-31
Applicant: 杭州电子科技大学
IPC: H01M4/50 , C01G45/02 , H01M10/0525 , B82Y40/00
Abstract: 本发明公开了一种以MOF为模板的锂离子电池负极材料δ‑MnO2的制备方法,其中δ‑MnO2具有纳米分级多孔结构。所述制备方法通过液相刻蚀法制得所述锂离子电池负极材料δ‑MnO2,属于锂离子电池技术领域。制备步骤为将碱性氢氧化物加入水中,搅拌至溶解;在室温和敞口环境下,加入Mn‑MOF材料,搅拌反应,经过滤、洗涤烘干后得到具有纳米分级结构的多孔δ‑MnO2材料。将本发明制得的δ‑MnO2材料用作锂离子电池负极,具有高容量、高倍率性能的特点。相比传统的热解技术,本发明的制备方法,合成过程简单、能耗低、MOF配体可回收、绿色环保,效率高,易用于规模化生产,具有广泛的应用前景。
-
公开(公告)号:CN114506875B
公开(公告)日:2024-02-23
申请号:CN202111641623.3
申请日:2021-12-29
Applicant: 杭州电子科技大学
IPC: H01M4/58 , C01G45/00 , H01M10/0525
Abstract: 本发明属于功能纳米材料制备技术领域,涉及一种过渡金属碳酸盐纳米材料的制备方法,将金属有机框架配合物MOFs前驱体作为金属源加入到溶剂中,搅拌分散均匀得MOFs悬浮液;配置碳酸盐溶液,将其与MOFs悬浮液混合反应,过滤、洗涤烘干后得到产物过渡金属碳酸盐纳米材料。本发明通过以MOF为反应金属源前驱体,来实现独特纳米结构的金属碳酸盐材料的可控制备,所得材料在锂离子电池应用中,展示出良好的性能,相比于传统的金属碳酸盐纳米材料的制备方法,此发明的制备方法简单,原料价廉易得,成本低,制备时间短,生产效率高,同时对金属碳酸盐材料形貌结构的调控效果好,极易用于大规模工业生产,具有良好的应用前景。
-
公开(公告)号:CN114314669A
公开(公告)日:2022-04-12
申请号:CN202111647141.9
申请日:2021-12-31
Applicant: 杭州电子科技大学
IPC: C01G45/02 , H01M4/50 , H01M10/0525 , B82Y40/00
Abstract: 本发明公开了一种以MOF为模板的锂离子电池负极材料δ‑MnO2的制备方法,其中δ‑MnO2具有纳米分级多孔结构。所述制备方法通过液相刻蚀法制得所述锂离子电池负极材料δ‑MnO2,属于锂离子电池技术领域。制备步骤为将碱性氢氧化物加入水中,搅拌至溶解;在室温和敞口环境下,加入Mn‑MOF材料,搅拌反应,经过滤、洗涤烘干后得到具有纳米分级结构的多孔δ‑MnO2材料。将本发明制得的δ‑MnO2材料用作锂离子电池负极,具有高容量、高倍率性能的特点。相比传统的热解技术,本发明的制备方法,合成过程简单、能耗低、MOF配体可回收、绿色环保,效率高,易用于规模化生产,具有广泛的应用前景。
-
-
-