一种基于半监督聚类集成学习的客户细分方法

    公开(公告)号:CN112288465B

    公开(公告)日:2024-04-09

    申请号:CN202011117305.2

    申请日:2020-10-19

    Abstract: 本发明公开一种基于半监督聚类集成学习的客户细分方法,本发明首先收集客户的特征信息,将特征信息数字化,构建客户特征信息数据集;利用少量的标签样本来初始化聚类中心,并设置核模糊聚类算法的模糊度和高斯宽度两个参数,生成若干个差异性较大的基聚类;利用标签样本的聚类准确性来计算各基聚类的可信度;通过近邻法和各基聚类的可信度来构造质量函数;最后利用D‑S证据理论将质量函数进行证据融合,得到聚类结果。本发明将半监督集成学习引入到客户细分中,解决了算法参数敏感性的问题;利用了先验信息合理估计各基聚类的可信度,改变各基聚类在融合过程中所占的比重,解决了证据冲突问题,使得融合结果更加合理,提高了客户细分的准确性。

    一种基于半监督聚类集成学习的客户细分方法

    公开(公告)号:CN112288465A

    公开(公告)日:2021-01-29

    申请号:CN202011117305.2

    申请日:2020-10-19

    Abstract: 本发明公开一种基于半监督聚类集成学习的客户细分方法,本发明首先收集客户的特征信息,将特征信息数字化,构建客户特征信息数据集;利用少量的标签样本来初始化聚类中心,并设置核模糊聚类算法的模糊度和高斯宽度两个参数,生成若干个差异性较大的基聚类;利用标签样本的聚类准确性来计算各基聚类的可信度;通过近邻法和各基聚类的可信度来构造质量函数;最后利用D‑S证据理论将质量函数进行证据融合,得到聚类结果。本发明将半监督集成学习引入到客户细分中,解决了算法参数敏感性的问题;利用了先验信息合理估计各基聚类的可信度,改变各基聚类在融合过程中所占的比重,解决了证据冲突问题,使得融合结果更加合理,提高了客户细分的准确性。

Patent Agency Ranking