-
公开(公告)号:CN115331005A
公开(公告)日:2022-11-11
申请号:CN202210955003.5
申请日:2022-08-10
Applicant: 杭州电子科技大学
IPC: G06V10/26 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/04
Abstract: 本发明公开了一种基于深监督融合和特征平滑的指向性物体分割方法。本发明采用深监督特征融合,能够在特征融合与上采样过程中对特征充分监督,同时可以有效结合不同细粒度特征信息,使的最终获得的掩码即可以保留全局特征下的位置信息,也可兼顾局部特征中的细节信息从而有效的提高分割的准确率,采用特征平滑损失函数,可以有效降低特征在融合与上采样过程的大幅波动的可能性,提升最终生成分割掩码的一致性,保证了模型训练过程的稳定性。基于不同的backbone可采用一些训练技巧,选择对应合理的网络参数、优化算法以及学习率的设置,从而提高了指向性物体分割的准确率。