-
公开(公告)号:CN108510496B
公开(公告)日:2020-09-22
申请号:CN201810313311.1
申请日:2018-04-09
Applicant: 杭州电子科技大学
IPC: G06T7/00
Abstract: 本发明提出了一种基于图像DCT域的SVD分解的模糊检测方法。首先计算待测图像的梯度图,图像的边缘信息可以从梯度图中得到,然后把梯度图进行分块,并进行DCT变换,因为DCT域的交流系数反映了图像的边缘和清晰度,接着差分矩阵来分析DCT域的交流系数信息,通过计算差分矩阵的奇异值,并构造响应函数来表示块的图像的模糊程度,最终用均值和方差去归一化图像块响应之和,来消除图像内容的影响。实验表明该方法得到的模糊分数与人眼对图像的主观评价分数高度一致。本发明的检测模型考虑到图像变模糊过程中的边缘变宽,清晰度变弱等特点,并有效的消除图像内容的影响,因此检测准确率很高,而且检测效率快,整体性能优于前人的方法。
-
公开(公告)号:CN108510496A
公开(公告)日:2018-09-07
申请号:CN201810313311.1
申请日:2018-04-09
Applicant: 杭州电子科技大学
IPC: G06T7/00
CPC classification number: G06T7/0002 , G06T2207/20021 , G06T2207/20052 , G06T2207/30168
Abstract: 本发明提出了一种基于图像DCT域的SVD分解的模糊检测方法。首先计算待测图像的梯度图,图像的边缘信息可以从梯度图中得到,然后把梯度图进行分块,并进行DCT变换,因为DCT域的交流系数反映了图像的边缘和清晰度,接着差分矩阵来分析DCT域的交流系数信息,通过计算差分矩阵的奇异值,并构造响应函数来表示块的图像的模糊程度,最终用均值和方差去归一化图像块响应之和,来消除图像内容的影响。实验表明该方法得到的模糊分数与人眼对图像的主观评价分数高度一致。本发明的检测模型考虑到图像变模糊过程中的边缘变宽,清晰度变弱等特点,并有效的消除图像内容的影响,因此检测准确率很高,而且检测效率快,整体性能优于前人的方法。
-