-
公开(公告)号:CN108596170B
公开(公告)日:2021-08-24
申请号:CN201810239211.9
申请日:2018-03-22
Applicant: 杭州电子科技大学
IPC: G06K9/32
Abstract: 本发明公开了一种自适应非极大抑制的目标检测方法,包括:S1:选取初始候选框集合进行迭代处理以对初始候选框集合内的候选框进行遍历排序得分,并将排序得分非最高得分的所有候选框组成剩余候选框集合;S2:基于剩余候选框集合中的两相邻候选框的注意力地图的差异以获取两相邻候选框的相邻目标区分度;S3:基于两相邻候选框的相邻目标区分度,构建自适应得分衰减函数并基于自适应衰减得分函数的计算结果自动赋予与两相邻候选框的得分相对应的衰减系数;S4:对两相邻候选框重新得分并丢弃得分低于阈值的候选框;S5:迭代重复步骤S2~S4,并判断剩余候选框集合中候选框数量是否为1;若是,则终止目标检测并输出最终的候选框融合结果。
-
公开(公告)号:CN108596170A
公开(公告)日:2018-09-28
申请号:CN201810239211.9
申请日:2018-03-22
Applicant: 杭州电子科技大学
IPC: G06K9/32
Abstract: 本发明公开了一种自适应非极大抑制的目标检测方法,包括:S1:选取初始候选框集合进行迭代处理以对初始候选框集合内的候选框进行遍历排序得分,并将排序得分非最高得分的所有候选框组成剩余候选框集合;S2:基于剩余候选框集合中的两相邻候选框的注意力地图的差异以获取两相邻候选框的相邻目标区分度;S3:基于两相邻候选框的相邻目标区分度,构建自适应得分衰减函数并基于自适应衰减得分函数的计算结果自动赋予与两相邻候选框的得分相对应的衰减系数;S4:对两相邻候选框重新得分并丢弃得分低于阈值的候选框;S5:迭代重复步骤S2~S4,并判断剩余候选框集合中候选框数量是否为1;若是,则终止目标检测并输出最终的候选框融合结果。
-
公开(公告)号:CN108509949A
公开(公告)日:2018-09-07
申请号:CN201810110564.9
申请日:2018-02-05
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于注意力地图的目标检测方法。本发明将自上而下的注意力引入当前主流的目标检测框架中,生成了可反映输入图像上各区域与待检测目标相关性的注意力地图,并基于生成的注意力地图对原先的候选框融合方案进行了优化,将自顶向下以及自底向上的信息结合进候选框的融合中,优化了目标检测的性能。本发明是一种更有效更接近生物视觉机制的目标检测方法。
-
公开(公告)号:CN108509949B
公开(公告)日:2020-05-15
申请号:CN201810110564.9
申请日:2018-02-05
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于注意力地图的目标检测方法。本发明将自上而下的注意力引入当前主流的目标检测框架中,生成了可反映输入图像上各区域与待检测目标相关性的注意力地图,并基于生成的注意力地图对原先的候选框融合方案进行了优化,将自顶向下以及自底向上的信息结合进候选框的融合中,优化了目标检测的性能。本发明是一种更有效更接近生物视觉机制的目标检测方法。
-
-
-