-
公开(公告)号:CN109285162A
公开(公告)日:2019-01-29
申请号:CN201811003417.8
申请日:2018-08-30
Applicant: 杭州电子科技大学
Abstract: 本发明涉及一种基于局部区域条件随机场模型的图像语义分割方法。本发明全卷积神经网络结构提取输入图片特征并获得一个粗糙的分割结果,区域选择结构将分割结果图进行边缘滤波,并选择分割结果为行人,自行车,机动车的部分的最大外接矩形,局部区域条件随机场模型在上述矩形区域建立条件随机场模型并精细优化上述矩形区域的分割结果。本发明有效的结合了条件随机场模型精度上的优势和全卷积神经网络速度上的优势。优化了条件随机场模型计算方式从而大幅降低了模型时间复杂度;提升了传统全卷积神经网络的分割精度;将概率图模型的应用和全卷积神经网络的应用设计为了一个端到端系统。