一种用于场景图检测的关系图学习方法

    公开(公告)号:CN113139423B

    公开(公告)日:2024-03-01

    申请号:CN202110256665.9

    申请日:2021-03-09

    Abstract: 本发明公开了一种用于场景图检测的关系图学习方法。本发明步骤:1、对于大型数据集中的图像,按照标准数据集处理方法,提取出现频次最高的150个目标和50个关系作为数据集Ⅰ的目标和关系;2、分别对数据集Ⅰ中的每张图像用目标检测网络Faster R‑CNN来提取目标,并获得每对目标之间的关系建议,提取的目标和关系建议构成关系数据;3、利用关系提取网络对得到的关系数据进行筛选,过滤冗余信息关系和无效性关系;4、构建一个关系图注意力网络,该网络由两部分组成:视觉‑空间图注意力子网络和语义‑空间图注意力子网络;通过融合两个子网络的结果获得最终关系图。本发明实验结果表明比现有的最优方法效果提升数个百分点。

    一种用于场景图检测的关系图学习方法

    公开(公告)号:CN113139423A

    公开(公告)日:2021-07-20

    申请号:CN202110256665.9

    申请日:2021-03-09

    Abstract: 本发明公开了一种用于场景图检测的关系图学习方法。本发明步骤:1、对于大型数据集中的图像,按照标准数据集处理方法,提取出现频次最高的150个目标和50个关系作为数据集Ⅰ的目标和关系;2、分别对数据集Ⅰ中的每张图像用目标检测网络Faster R‑CNN来提取目标,并获得每对目标之间的关系建议,提取的目标和关系建议构成关系数据;3、利用关系提取网络对得到的关系数据进行筛选,过滤冗余信息关系和无效性关系;4、构建一个关系图注意力网络,该网络由两部分组成:视觉‑空间图注意力子网络和语义‑空间图注意力子网络;通过融合两个子网络的结果获得最终关系图。本发明实验结果表明比现有的最优方法效果提升数个百分点。

Patent Agency Ranking