一种基于时域频域对抗学习的多元时序异常检测方法

    公开(公告)号:CN116595377A

    公开(公告)日:2023-08-15

    申请号:CN202310622647.7

    申请日:2023-05-30

    Abstract: 本发明涉及时间序列异常检测领域,且公开了一种基于时域频域对抗学习的多元时序异常检测方法,包括以下步骤:步骤一:数据预处理;步骤二:选取训练数据输入到ATF‑UAD中;步骤三:得到时域重构序列;步骤四:得到频域重构序列;步骤五:得到加权重构序列;步骤六:完成模型训练;步骤七:将验证数据集输入到ATF‑UAD中;步骤八:重复步骤二至步骤七,直至模型结束训练;步骤九:将测试数据集输入到ATF‑UAD中;步骤十:重复步骤一至步骤九,完成ATF‑UAD在数据集上的异常检测获得最终得分。本发明采用上述基于时域频域对抗学习的多元时序异常检测方法,利用ATF‑UAD通过双视图对抗学习机制处理两个重建器的重建序列,最小化误差重建值并最大化任何残差异常值。

    基于特征提取强化的高鲁棒性异质图节点分类方法及系统

    公开(公告)号:CN115659239A

    公开(公告)日:2023-01-31

    申请号:CN202211323554.6

    申请日:2022-10-25

    Abstract: 本发明公开了一种基于特征提取强化的高鲁棒性异质图节点分类方法及系统,涉及异质图节点分类技术领域。该方法包括:获取目标异质图数据;将所述目标异质图数据输入到训练好的鲁棒性特征强化框架模型中,以对所述目标异质图数据中的节点进行分类;所述训练好的鲁棒性特征强化框架模型是基于离散映射模块、协作分离模块、异质图节点分类器、超参优化模块和样本数据集确定的;所述样本数据集包括多个异质图数据集以及相应的节点分类标签;所述节点分类标签包括:节点特征、邻接矩阵和元路径。本发明通过使用鲁棒性特征强化框架模型,优化异质图神经网络的特征嵌入的学习性能,以解决现有模型特征提取能力不足、精度不足和实验结果不稳定等问题。

    一种基于时空注意力的双通道神经网络的兴趣点推荐方法

    公开(公告)号:CN115757938A

    公开(公告)日:2023-03-07

    申请号:CN202211317767.8

    申请日:2022-10-26

    Abstract: 本发明公开了一种基于时空注意力的双通道神经网络的兴趣点推荐方法,采用双通道神经网络的架构,以用户群体作为输入提取用户群体的时间偏好特征与地点偏好特征,以单个用户作为输入提取用户的个性化偏好特征。通过图神经网络学习用户的轨迹意图,并且结合时间地点偏好特征为用户做出个性化的推荐。本方法可学习非相邻位置和非连续访问之间的相关性。通过用户时间偏好与兴趣点时间偏好匹配层为用户匹配合合适的下一个兴趣点,且面对冷启动问题时更加有效。本发明的采样方式在计算损失时,采样损失对正确预测仍有动量影响,所有负采样都有机会参与交叉熵损失的计算。本发明在多个数据集上都显得更加有效,在序列较短时表现突出。

Patent Agency Ranking