-
公开(公告)号:CN112450946A
公开(公告)日:2021-03-09
申请号:CN202011206585.4
申请日:2020-11-02
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于循环生成对抗网络的脑电伪迹修复的方法。由于脑电数据没有严格一一对应的无伪迹EEG数据和有伪迹的EEG数据,传统的方法并不能很好验证是否将感兴趣的信息也一并去除。本发明设计了基于循环生产对抗网络,将有伪迹EEG数据处理后仍能保留住感兴趣的信息。首先根据设计的范式获取数据;其次并进行必要的预处理并将数据根据类别分离;然后设置训练参数,将数据导入训练网络,最后得到去除伪迹而保留兴趣信息的EEG数据。与传统的伪迹去除方法相比,基于循环生成对抗网络的脑电伪迹修复,在修复后的EEG数据上更能保留感兴趣的信息,有助于进行后续研究。
-
公开(公告)号:CN112163486A
公开(公告)日:2021-01-01
申请号:CN202010991868.8
申请日:2020-09-18
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于基于深度学习与稀疏学习相结合的脑电通道优化方法。本发明首先利用模型驾驶实验来收集数据集,通过数据扩充使源域和目标域中的样本趋于平衡,对已经平衡的样本进行稀疏学习和域对抗学习,其设计初衷是同时最小化标签预测器和与判别器的损失值;基于该目的我们设计了目标函数将,并通过添加L21norm来使得模型具备特征选择的能力,除此之外我们还使用了GAN,在一定程度上提高了模型的鲁棒性和泛化能力。最后,在实验评估阶段,一方面单独评估了本发明的性能,还让其与其他的通道优化算法项比较,并取得了独一无二的优势。另一方面在保证准确率的前提下,可以有效减少通道的数量,从而减轻系统的负担和开销。
-
公开(公告)号:CN112274162B
公开(公告)日:2022-05-17
申请号:CN202010985675.1
申请日:2020-09-18
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于生成对抗域自适应的跨被试EEG疲劳状态分类方法。本发明首先获取数据并预处理,去除伪迹;其次通过PSD来进行EEG特征提取,从三维EEG时间序列获得二维样本矩阵;然后区分源域和目标域数据集,获得不重合的训练集和测试集;再用部分无标签的目标域数据和符合高斯分布的随机数据训练分类模型GDANN;最后利用混淆矩阵对分类结果准确率进行评估。本发明将生成对抗网络和域不变思想进一步结合,既解决了EEG信号数据集稀少难获得的问题,又平衡了源域数据和目标域数据不匹配的问题,一定程度上避免了负迁移,训练出了高精度的跨被试疲劳检测分类器,以期在实际的脑机交互中有着广泛的应用前景。
-
公开(公告)号:CN112274162A
公开(公告)日:2021-01-29
申请号:CN202010985675.1
申请日:2020-09-18
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于生成对抗域自适应的跨被试EEG疲劳状态分类方法。本发明首先获取数据并预处理,去除伪迹;其次通过PSD来进行EEG特征提取,从三维EEG时间序列获得二维样本矩阵;然后区分源域和目标域数据集,获得不重合的训练集和测试集;再用部分无标签的目标域数据和符合高斯分布的随机数据训练分类模型GDANN;最后利用混淆矩阵对分类结果准确率进行评估。本发明将生成对抗网络和域不变思想进一步结合,既解决了EEG信号数据集稀少难获得的问题,又平衡了源域数据和目标域数据不匹配的问题,一定程度上避免了负迁移,训练出了高精度的跨被试疲劳检测分类器,以期在实际的脑机交互中有着广泛的应用前景。
-
公开(公告)号:CN112580518B
公开(公告)日:2024-04-05
申请号:CN202011526572.5
申请日:2020-12-22
Applicant: 杭州电子科技大学
IPC: G06F18/2431 , G06F18/23 , G06F18/214 , G06F18/213 , G06N3/088 , G06N3/096
Abstract: 本发明公开了一种基于原型聚类域适应算法的跨被试EEG认知状态识别方法。本发明引入了类别域的概念,一方面基于标签的多源域对齐,考虑不同类间的特征分布差异,研究特征空间中不同源域间类条件下的结构细粒度对齐,将多源域域内类别不平衡问题转化为类别域的方式。另一方面,源域和目标域之间的原型理论聚类对齐,即以动态调整原型中心为约束对目标域进行相似源域间的聚类,实现域间同类特征相近,异类特征相疏。前者实现域内类条件结构特征对齐,后者实现全局细粒度结构特征对齐。本发明能够兼容类别平衡和不平衡的情况,有效解决了脑认知计算领域脑电信号的个体差异性问题,具有较强的泛化能力,能够很好的适用于临床诊断和实际应用。
-
公开(公告)号:CN112274154B
公开(公告)日:2022-05-17
申请号:CN202010985572.5
申请日:2020-09-18
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于脑电样本权重调整的跨被试疲劳状态分类方法。本发明以PSD作为特征提取方法,InstanceEasyTL算法作为分类器,通过对EEG信号的处理及分析,在跨被试的设定下,对驾驶员的疲劳程度进行分类,实现疲劳、清醒两种状态的区分。首先获取数据并预处理;其次使用PSD对脑电数据进行特征提取;然后设置实验的新源域和新目标域,再根据InstanceEasyTL算法进行分类。与传统的机器学习、深度学习方法和基于特征对齐的EasyTL方法相比,在跨被试上拥有更好的分类性能。此外本方法在仅需目标域中小部分比例的数据情况下,仍然能够保持较高的分类性能。
-
公开(公告)号:CN113450538A
公开(公告)日:2021-09-28
申请号:CN202110720650.3
申请日:2021-06-28
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种痛苦表情识别及跌倒行为检测的警示系统。基于痛苦表情识别及跌倒行为检测的警示系统,包括摄像头、数据库服务器、云计算服务器和智能手机。还包括数据存储模块、中心识别模块和报警模块,其中数据存储模块位于数据库服务器中,中心识别模块和报警模块位于云计算服务器中。数据存储模块用于存储警示系统所需的相关信息。中心识别模块是用于检测异常状况。报警模块用于即时主动向管理员发送报警信息。本发明结合痛苦表情识别及跌倒行为检测对图像视频流进行检测,识别准确率高且识别速度并没有因为多种检测而下降。本发明适用范围广,能检测更多种危险状况且适用于实时视频检测。
-
公开(公告)号:CN112580518A
公开(公告)日:2021-03-30
申请号:CN202011526572.5
申请日:2020-12-22
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于原型聚类域适应算法的跨被试EEG认知状态识别方法。本发明引入了类别域的概念,一方面基于标签的多源域对齐,考虑不同类间的特征分布差异,研究特征空间中不同源域间类条件下的结构细粒度对齐,将多源域域内类别不平衡问题转化为类别域的方式。另一方面,源域和目标域之间的原型理论聚类对齐,即以动态调整原型中心为约束对目标域进行相似源域间的聚类,实现域间同类特征相近,异类特征相疏。前者实现域内类条件结构特征对齐,后者实现全局细粒度结构特征对齐。本发明能够兼容类别平衡和不平衡的情况,有效解决了脑认知计算领域脑电信号的个体差异性问题,具有较强的泛化能力,能够很好的适用于临床诊断和实际应用。
-
公开(公告)号:CN112163486B
公开(公告)日:2024-03-12
申请号:CN202010991868.8
申请日:2020-09-18
Applicant: 杭州电子科技大学
IPC: G06F18/10 , G06F18/213 , G06F18/24 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种基于基于深度学习与稀疏学习相结合的脑电通道优化方法。本发明首先利用模型驾驶实验来收集数据集,通过数据扩充使源域和目标域中的样本趋于平衡,对已经平衡的样本进行稀疏学习和域对抗学习,其设计初衷是同时最小化标签预测器和与判别器的损失值;基于该目的我们设计了目标函数将,并通过添加L21norm来使得模型具备特征选择的能力,除此之外我们还使用了GAN,在一定程度上提高了模型的鲁棒性和泛化能力。最后,在实验评估阶段,一方面单独评估了本发明的性能,还让其与其他的通道优化算法项比较,并取得了独一无二的优势。另一方面在保证准确率的前提下,可以有效减少通道的数量,从而减轻系统的负担和开销。
-
公开(公告)号:CN112749635A
公开(公告)日:2021-05-04
申请号:CN202011589943.4
申请日:2020-12-29
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于原型聚类域适应算法的跨被试EEG认知状态识别方法。本发明引入了类别域的概念,一方面基于标签的多源域对齐,考虑不同类间的特征分布差异,研究特征空间中不同源域间类条件下的结构细粒度对齐,将多源域域内类别不平衡问题转化为类别域的方式。另一方面,源域和目标域之间的原型理论聚类对齐,即以动态调整原型中心为约束对目标域进行相似源域间的聚类,实现域间同类特征相近,异类特征相疏。前者实现域内类条件结构特征对齐,后者实现全局细粒度结构特征对齐。本发明能够兼容类别平衡和不平衡的情况,有效解决了脑认知计算领域脑电信号的个体差异性问题,具有较强的泛化能力,能够很好的适用于临床诊断和实际应用。
-
-
-
-
-
-
-
-
-