一种基于动态特征中心的工业零件异常检测方法及系统

    公开(公告)号:CN116862893A

    公开(公告)日:2023-10-10

    申请号:CN202310919640.1

    申请日:2023-07-25

    Abstract: 本发明提供了一种基于动态特征中心的工业零件异常检测方法及系统,方法包括以下步骤:S1.获取并整理划分工业零件数据集,制作包含大量正常样本和少量异常样本的数据集;S2.对数据集进行预处理;S3.将数据集输入到特征提取网络,进行特征提取;S4.根据初始化得到的特征中心,利用卡尔曼滤波动态移动特征中心;S5.重复上述步骤S1‑S4,最小化损失,更新迭代训练,直到模型达到收敛,迭代结束,保存模型;S6.将待检测的工业零件图片输入到训练好的模型并执行S1‑S3的处理步骤;S7.计算测试图像的特征向量与特征中心的之间距离,输出异常分数;S8.通过比较异常分数与设定的阈值的大小,得到异常检测结果。本发明缓解了模型过拟合的问题,提高了检测效率和准确率。

Patent Agency Ranking