复杂环境下基于低秩分解和辅助字典的人脸识别方法

    公开(公告)号:CN108446589A

    公开(公告)日:2018-08-24

    申请号:CN201810122730.7

    申请日:2018-02-07

    Abstract: 本发明公开一种复杂环境下基于低秩分解和辅助字典的人脸识别方法。本发明步骤如下:1.通过非凸稳健主成分分析法对输入人脸图片进行低秩分解,求解基于范数的目标函数,得到初步去除复杂环境影响的低秩内容;2.基于核范数的去相关性低秩分解:在目标函数中添加去除类间相关性的正则项,并将上一步骤获得的低秩内容进行奇异值分解后用作初始化矩阵,通过ADMM算法交替迭代求解得到用于识别的低秩字典。3.基于辅助字典学习的分类识别:获得模拟复杂环境变化的辅助字典,并通过与低秩字典联立使用,通过RADL进行人脸分类识别。本发明使用到的低秩分解目标函数能够充分去除干扰信息,使分解后的人脸图像更具有身份识别能力和抗环境干扰性。

    基于低秩分解和稀疏表示残差对比的多姿态人脸识别方法

    公开(公告)号:CN109063555B

    公开(公告)日:2021-07-02

    申请号:CN201810667478.8

    申请日:2018-06-26

    Abstract: 本发明公开一种基于低秩特征和稀疏表示比较分类的多姿态人脸识别方法。本发明首先通过对偶低秩分解方法对输入人脸图片进行降维分解优化,得到去除了姿态结构的第一型低秩特征;其次结构化不相关的低秩分解,通过增广拉格朗日乘子法ALM进行交替迭代求解获得第二型低秩特征;最后基于稀疏表示的残差对比分类:如果两种特征分类结果相同,则分类标签保持不变,若分类标签不相同时,则构建残差率对比模型,比较两种特征经过稀疏表示后的次最小残差与最小残差的差与最小残差的比值。选择两种特征中残差率较高的分类结果作为最终的分类类别。本发明使用的低秩分解方法和稀疏表示残差对比模型能够有效去除姿态结构对识别效果造成的干扰。

    基于低秩分解和稀疏表示残差对比的多姿态人脸识别方法

    公开(公告)号:CN109063555A

    公开(公告)日:2018-12-21

    申请号:CN201810667478.8

    申请日:2018-06-26

    Abstract: 本发明公开一种基于低秩特征和稀疏表示比较分类的多姿态人脸识别方法。本发明首先通过对偶低秩分解方法对输入人脸图片进行降维分解优化,得到去除了姿态结构的第一型低秩特征;其次结构化不相关的低秩分解,通过增广拉格朗日乘子法ALM进行交替迭代求解获得第二型低秩特征;最后基于稀疏表示的残差对比分类:如果两种特征分类结果相同,则分类标签保持不变,若分类标签不相同时,则构建残差率对比模型,比较两种特征经过稀疏表示后的次最小残差与最小残差的差与最小残差的比值。选择两种特征中残差率较高的分类结果作为最终的分类类别。本发明使用的低秩分解方法和稀疏表示残差对比模型能够有效去除姿态结构对识别效果造成的干扰。

    复杂环境下基于低秩分解和辅助字典的人脸识别方法

    公开(公告)号:CN108446589B

    公开(公告)日:2022-03-22

    申请号:CN201810122730.7

    申请日:2018-02-07

    Abstract: 本发明公开一种复杂环境下基于低秩分解和辅助字典的人脸识别方法。本发明步骤如下:1.通过非凸稳健主成分分析法对输入人脸图片进行低秩分解,求解基于范数的目标函数,得到初步去除复杂环境影响的低秩内容;2.基于核范数的去相关性低秩分解:在目标函数中添加去除类间相关性的正则项,并将上一步骤获得的低秩内容进行奇异值分解后用作初始化矩阵,通过ADMM算法交替迭代求解得到用于识别的低秩字典。3.基于辅助字典学习的分类识别:获得模拟复杂环境变化的辅助字典,并通过与低秩字典联立使用,通过RADL进行人脸分类识别。本发明使用到的低秩分解目标函数能够充分去除干扰信息,使分解后的人脸图像更具有身份识别能力和抗环境干扰性。

Patent Agency Ranking