-
公开(公告)号:CN113673347B
公开(公告)日:2025-01-17
申请号:CN202110818889.4
申请日:2021-07-20
Applicant: 杭州电子科技大学
IPC: G06F18/24 , G06F18/213 , G06F18/2415
Abstract: 本发明公开了一种基于Wasserstein距离的表征相似对抗网络生成方法,先通过减小Wasserstein距离的方法最大程度的减小源域受试者和目的域受试者的边缘概率分布,再通过关联强化的方法减小条件概率分布,即加强类别的内在联系,包括步骤:采样、过滤噪音、映射、设置域混淆器的Wasserstein距离、设置域混淆器的梯度惩罚、采用关联强化的分类器、求源域到目的域特征表征的相似度、求目的域到源域特征表征的相似度、得到特征在源域目的域的往返概率、计算源域标签概率、采用交叉熵损失计算Lzw和Psts的损失、设定访问概率、设置目的域标签概率、采用交叉熵损失计算Lop和Pv的损失、设置分类器损失、设置源域预测分类损失、设置迭代次数N,当训练次数达到设定的迭代次数后停止。
-
公开(公告)号:CN113673347A
公开(公告)日:2021-11-19
申请号:CN202110818889.4
申请日:2021-07-20
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于Wasserstein距离的表征相似对抗网络模型,先通过减小Wasserstein距离的方法最大程度的减小源域受试者和目的域受试者的边缘概率分布,再通过关联强化的方法减小条件概率分布,即加强类别的内在联系,包括步骤:采样、过滤噪音、映射、设置域混淆器的Wasserstein距离、设置域混淆器的梯度惩罚、采用关联强化的分类器、求源域到目的域特征表征的相似度、求目的域到源域特征表征的相似度、得到特征在源域目的域的往返概率、计算源域标签概率、采用交叉熵损失计算Lzw和Psts的损失、设定访问概率、设置目的域标签概率、采用交叉熵损失计算Lop和Pv的损失、设置分类器损失、设置源域预测分类损失、设置迭代次数N,当训练次数达到设定的迭代次数后停止。
-