-
公开(公告)号:CN107743225B
公开(公告)日:2019-08-06
申请号:CN201710962452.1
申请日:2017-10-16
Applicant: 杭州电子科技大学
IPC: H04N17/00
Abstract: 本发明公开了一种利用多层深度表征进行无参考图像质量预测的方法。本发明包括如下步骤:步骤(1)数据预处理:将所有图像缩放到统一的尺寸大小,减去平局值,将二进制数据转换为深度神经网络能识别的数据格式;步骤(2)特征提取及处理:利用一个在ImageNet上训练好的37层VGGnet模型进行特征提取,提取每层特征并进行处理,得到一个列向量;步骤(3)预测分数:将每层特征融合得到的列向量输入支持向量回归模型得到每层特征的预测分数;将各层分数平均值作为整张图片的质量评估分值。本发明提出了一整简单高效的针对图像质量评价的新方法。并且获得了目前在图像质量评价领域中的最好效果。
-
公开(公告)号:CN107743225A
公开(公告)日:2018-02-27
申请号:CN201710962452.1
申请日:2017-10-16
Applicant: 杭州电子科技大学
IPC: H04N17/00
CPC classification number: H04N17/004
Abstract: 本发明公开了一种利用多层深度表征进行无参考图像质量预测的方法。本发明包括如下步骤:步骤(1)数据预处理:将所有图像缩放到统一的尺寸大小,减去平局值,将二进制数据转换为深度神经网络能识别的数据格式;步骤(2)特征提取及处理:利用一个在ImageNet上训练好的37层VGGnet模型进行特征提取,提取每层特征并进行处理,得到一个列向量;步骤(3)预测分数:将每层特征融合得到的列向量输入支持向量回归模型得到每层特征的预测分数;将各层分数平均值作为整张图片的质量评估分值。本发明提出了一整简单高效的针对图像质量评价的新方法。并且获得了目前在图像质量评价领域中的最好效果。
-