基于平均影响值数据变换的特征加权K近邻故障诊断方法

    公开(公告)号:CN107832789B

    公开(公告)日:2020-11-06

    申请号:CN201711053636.2

    申请日:2017-11-01

    Inventor: 文成林 姬思雨

    Abstract: 本发明公开了一种基于平均影响值数据变换的特征加权K近邻故障诊断方法。本发明中MIV的计算过程是通过对系统的输入值做等比例增加和减小,得到增加和减少后的数据分别作为系统输入,求解其对应的系统输出值。求取各个输入变量做等比例增加对应的系统输出值减去各个输入变量做等比例减小对应的系统输出值得到系统输入的各个参变量对系统输出的影响程度值及MIV值;采用多次计算求平均值的方式确定各个特征变量最终的MIV值。通过对MIV值一定的等比例放缩,将其用作K近邻方法输入数据的特征权值来进行故障诊断。通过UCI标准数据集的仿真测试,验证了本方法的有效性。

    基于平均影响值数据变换的特征加权K近邻故障诊断方法

    公开(公告)号:CN107832789A

    公开(公告)日:2018-03-23

    申请号:CN201711053636.2

    申请日:2017-11-01

    Inventor: 文成林 姬思雨

    Abstract: 本发明公开了一种基于平均影响值数据变换的特征加权K近邻故障诊断方法。本发明中MIV的计算过程是通过对系统的输入值做等比例增加和减小,得到增加和减少后的数据分别作为系统输入,求解其对应的系统输出值。求取各个输入变量做等比例增加对应的系统输出值减去各个输入变量做等比例减小对应的系统输出值得到系统输入的各个参变量对系统输出的影响程度值及MIV值;采用多次计算求平均值的方式确定各个特征变量最终的MIV值。通过对MIV值一定的等比例放缩,将其用作K近邻方法输入数据的特征权值来进行故障诊断。通过UCI标准数据集的仿真测试,验证了本方法的有效性。

Patent Agency Ranking