-
公开(公告)号:CN112782660B
公开(公告)日:2023-06-30
申请号:CN202011599336.6
申请日:2020-12-29
Applicant: 杭州电子科技大学
IPC: G01S7/41
Abstract: 本发明公开了一种基于Bert的雷达目标识别方法,包括以下步骤:S1,收集数据并划分训练集和测试集,通过雷达采集的HRRP数据,需要对每个类别进行采样,分别选出训练集和测试集,之后进行合并,保证每个类别的数据形式都有被采样到;S2,对HRRP数据进行幂次变换,并使用注意力机制;S3,用Bert模型处理幂次变换的输出,提取更加深层的特征;S4,搭建分类器,对HRRP目标分类,对Bert模型的输出,再次使用注意力机制的思想,将更有效的特征进行保留,最后采用softmax对网络的输出进行分类;S5,将经过S1处理后的HRRP测试集送入S2、S3、S4步骤中已训练完成的模型中进行测试。
-
公开(公告)号:CN112699782B
公开(公告)日:2024-12-03
申请号:CN202011595694.X
申请日:2020-12-29
Applicant: 杭州电子科技大学
IPC: G06V10/774 , G06F18/10 , G06V10/764 , G06N3/0464 , G06N3/08 , G06V20/13
Abstract: 本发明公开了一种基于N2N和Bert的雷达HRRP目标识别方法,包括以下步骤:S1,收集数据并划分训练集和测试集,通过雷达采集的HRRP数据,需要对每个类别进行采样,分别选出训练集和测试集,之后进行合并,保证每个类别的数据形式都有被采样到;S2,用N2N模块进行降噪;S3,经过N2N模块的数据,经过卷积神经网络模块提取,调整下通道数,以便输入到Bert模型中;S4,用Bert处理CNN提取的有效特征,提取更加深层的特征;S5,在分类层对特征进行分类;S6,将经过S1处理后的HRRP测试集送入S5步骤中已训练完成的模型中进行测试。
-
公开(公告)号:CN115047422A
公开(公告)日:2022-09-13
申请号:CN202210391943.6
申请日:2022-04-14
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于多尺度混合空洞卷积的雷达目标识别方法,首先进行数据集获取,对数据集中的样本进行预处理;通过动态调整层对HRRP样本进行整体的动态范围调整;通过多尺度混合空洞卷积模块对动态调整后的数据进行特征提取;通过使用通道注意力机制,对通道间的相互依赖建模来使多尺度混合空洞卷积模块自适应地重新缩放每个通道的特征重要性;搭建分类器,对HRRP目标分类。本发明使用多尺度卷积核提取不同物理结构特征,并使用空洞卷积扩大卷积核在序列问题上的感受野,利用注意力机制为模型增加了自适应缩放特征重要性的能力。
-
公开(公告)号:CN112782660A
公开(公告)日:2021-05-11
申请号:CN202011599336.6
申请日:2020-12-29
Applicant: 杭州电子科技大学
IPC: G01S7/41
Abstract: 本发明公开了一种基于Bert的雷达目标识别方法,包括以下步骤:S1,收集数据并划分训练集和测试集,通过雷达采集的HRRP数据,需要对每个类别进行采样,分别选出训练集和测试集,之后进行合并,保证每个类别的数据形式都有被采样到;S2,对HRRP数据进行幂次变换,并使用注意力机制;S3,用Bert模型处理幂次变换的输出,提取更加深层的特征;S4,搭建分类器,对HRRP目标分类,对Bert模型的输出,再次使用注意力机制的思想,将更有效的特征进行保留,最后采用softmax对网络的输出进行分类;S5,将经过S1处理后的HRRP测试集送入S2、S3、S4步骤中已训练完成的模型中进行测试。
-
公开(公告)号:CN112699782A
公开(公告)日:2021-04-23
申请号:CN202011595694.X
申请日:2020-12-29
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于N2N和Bert的雷达HRRP目标识别方法,包括以下步骤:S1,收集数据并划分训练集和测试集,通过雷达采集的HRRP数据,需要对每个类别进行采样,分别选出训练集和测试集,之后进行合并,保证每个类别的数据形式都有被采样到;S2,用N2N模块进行降噪;S3,经过N2N模块的数据,经过卷积神经网络模块提取,调整下通道数,以便输入到Bert模型中;S4,用Bert处理CNN提取的有效特征,提取更加深层的特征;S5,在分类层对特征进行分类;S6,将经过S1处理后的HRRP测试集送入S5步骤中已训练完成的模型中进行测试。
-
公开(公告)号:CN113238197B
公开(公告)日:2023-07-04
申请号:CN202011600963.7
申请日:2020-12-29
Applicant: 杭州电子科技大学
IPC: G01S7/41
Abstract: 本发明公开了一种基于Bert和BiLSTM的雷达目标识别及据判方法,包括以下步骤:S1,收集样本并划分训练集和测试集,进行数据预处理,包括强调归一化和重心对齐;S2,使用带注意力机制的幂次变换;S3,用Bert处理幂次变换的输出,提取更加深层的特征;S4,通过双向LSTM,加强特征提取;S5,使用softmax分类器分类;S6,将经过S1处理后的HRRP测试集送入S2、S3、S4,S5步骤中已训练完成的模型中进行测试。
-
公开(公告)号:CN112764024B
公开(公告)日:2023-06-16
申请号:CN202011600978.3
申请日:2020-12-29
Applicant: 杭州电子科技大学
IPC: G01S13/88
Abstract: 本发明公开了一种基于卷积神经网络和Bert的雷达目标识别方法,包括以下步骤:S1,收集数据并划分训练集和测试集,对数据进行强度归一化和重心对齐处理;S2,将上述处理的HRRP样本输入到CNN模块,用CNN对处理后的样本进行提取特征;S3,用Bert处理CNN提取的有效特征,提取更加深层的特征;S4,搭建分类器,对HRRP目标分类,对Bert的输出,再次使用注意力机制,将更有效的特征进行保留,最后采用softmax对网络的输出进行分类;S5,将经过S1处理后的HRRP测试集送入S2、S3、S4步骤中已训练完成的模型中进行测试。
-
公开(公告)号:CN113238197A
公开(公告)日:2021-08-10
申请号:CN202011600963.7
申请日:2020-12-29
Applicant: 杭州电子科技大学
IPC: G01S7/41
Abstract: 本发明公开了一种基于Bert和BiLSTM的雷达目标识别及据判方法,包括以下步骤:S1,收集样本并划分训练集和测试集,进行数据预处理,包括强调归一化和重心对齐;S2,使用带注意力机制的幂次变换;S3,用Bert处理幂次变换的输出,提取更加深层的特征;S4,通过双向LSTM,加强特征提取;S5,使用softmax分类器分类;S6,将经过S1处理后的HRRP测试集送入S2、S3、S4,S5步骤中已训练完成的模型中进行测试。
-
公开(公告)号:CN112764024A
公开(公告)日:2021-05-07
申请号:CN202011600978.3
申请日:2020-12-29
Applicant: 杭州电子科技大学
IPC: G01S13/88
Abstract: 本发明公开了一种基于卷积神经网络和Bert的雷达目标识别方法,包括以下步骤:S1,收集数据并划分训练集和测试集,对数据进行强度归一化和重心对齐处理;S2,将上述处理的HRRP样本输入到CNN模块,用CNN对处理后的样本进行提取特征;S3,用Bert处理CNN提取的有效特征,提取更加深层的特征;S4,搭建分类器,对HRRP目标分类,对Bert的输出,再次使用注意力机制,将更有效的特征进行保留,最后采用softmax对网络的输出进行分类;S5,将经过S1处理后的HRRP测试集送入S2、S3、S4步骤中已训练完成的模型中进行测试。
-
-
-
-
-
-
-
-